Download Free Smart Modeling And Simulation For Complex Systems Book in PDF and EPUB Free Download. You can read online Smart Modeling And Simulation For Complex Systems and write the review.

This book aims to provide a description of these new Artificial Intelligence technologies and approaches to the modeling and simulation of complex systems, as well as an overview of the latest scientific efforts in this field such as the platforms and/or the software tools for smart modeling and simulating complex systems. These tasks are difficult to accomplish using traditional computational approaches due to the complex relationships of components and distributed features of resources, as well as the dynamic work environments. In order to effectively model the complex systems, intelligent technologies such as multi-agent systems and smart grids are employed to model and simulate the complex systems in the areas of ecosystem, social and economic organization, web-based grid service, transportation systems, power systems and evacuation systems.
This volume constitutes the proceedings of the 18th Asia Simulation Conference, AsiaSim 2018, held in Kyoto, Japan, in August 2018. The 45 revised full papers presented in this volume were carefully reviewed and selected from 90 submissions. The papers are organized in topical sections on modeling and simulation technology; soft computing and machine learning; high performance computing and cloud computing; simulation technology for industry; simulation technology for intelligent society; simulation of instrumentation and control application; computational mathematics and computational science; flow simulation; visualization and computer vision to support simulation.
This four-volume set (CCIS 643, 644, 645, 646) constitutes the refereed proceedings of the 16th Asia Simulation Conference and the First Autumn Simulation Multi-Conference, AsiaSim / SCS AutumnSim 2016, held in Beijing, China, in October 2016. The 265 revised full papers presented were carefully reviewed and selected from 651 submissions. The papers in this second volume of the set are organized in topical sections on HMI and robot simulations; modeling and simulation for intelligent manufacturing; military simulation; visualization and virtual reality.
This book provides a description of advanced multi-agent and artificial intelligence technologies for the modeling and simulation of complex systems, as well as an overview of the latest scientific efforts in this field. A complex system features a large number of interacting components, whose aggregate activities are nonlinear and self-organized. A multi-agent system is a group or society of agents which interact with others cooperatively and/or competitively in order to reach their individual or common goals. Multi-agent systems are suitable for modeling and simulation of complex systems, which is difficult to accomplish using traditional computational approaches.
This volume constitutes the proceedings of the 20th Asian Simulation Conference, AsiaSim 2021, held as a virtual event in November 2021. The 9 full papers presented in this volume were carefully reviewed and selected from 23 submissions. The papers are organized in topical sections on simulation and visualization; modeling and simulation of systems.
This book deals with the most fundamental and essential techniques to simulate complex systems, from the dynamics of molecules to the spreading of diseases, from optimization using ant colonies to the simulation of the Game of Life.
Modern network systems such as Internet of Things, Smart Grid, VoIP traffic, Peer-to-Peer protocol, and social networks, are inherently complex. They require powerful and realistic models and tools not only for analysis and simulation but also for prediction.
This book constitutes the refereed proceedings of the 22nd Asia Simulation Conference on Methods and Applications for Modeling and Simulation of Complex Systems, AsiaSim 2023, held in Langkawi, Malaysia, during October 25–26, 2023. The 77 full papers included in this book were carefully reviewed and selected from 164 submissions. They were organized in topical sections as follows: Modelling and Simulation, Artificial intelligence, Industry 4.0, Digital Twins Modelling, Simulation and Gaming, Simulation for Engineering, Simulation for Sustainable Development, Simulation in Social Sciences.
This book is a definitive introduction to models of computation for the design of complex, heterogeneous systems. It has a particular focus on cyber-physical systems, which integrate computing, networking, and physical dynamics. The book captures more than twenty years of experience in the Ptolemy Project at UC Berkeley, which pioneered many design, modeling, and simulation techniques that are now in widespread use. All of the methods covered in the book are realized in the open source Ptolemy II modeling framework and are available for experimentation through links provided in the book. The book is suitable for engineers, scientists, researchers, and managers who wish to understand the rich possibilities offered by modern modeling techniques. The goal of the book is to equip the reader with a breadth of experience that will help in understanding the role that such techniques can play in design.
Model Engineering for Simulation provides a systematic introduction to the implementation of generic, normalized and quantifiable modeling and simulation using DEVS formalism. It describes key technologies relating to model lifecycle management, including model description languages, complexity analysis, model management, service-oriented model composition, quantitative measurement of model credibility, and model validation and verification. The book clearly demonstrates how to construct computationally efficient, object-oriented simulations of DEVS models on parallel and distributed environments. - Guides systems and control engineers in the practical creation and delivery of simulation models using DEVS formalism - Provides practical methods to improve credibility of models and manage the model lifecycle - Helps readers gain an overall understanding of model lifecycle management and analysis - Supported by an online ancillary package that includes an instructors and student solutions manual