Download Free Smart Materials Book in PDF and EPUB Free Download. You can read online Smart Materials and write the review.

Smart materials are materials that have one or more property that can be significantly changed in a controlled fashion by external stimuli, such as stress, temperature, moisture, or pH. Active materials and smart structures offer a wealth of new opportunities to human ingenuity and engineering design. Whereas smart structures have the attributes of adaptability, flexibility, and even 'intelligence', the active materials are the enabling factors that make smart composite structures possible. This new Major Reference Work on smart materials provides a full and comprehensive source of information for both researchers and practitioners on the fundamental and recent developments in the fields of design, development, manufacturing and application of smart materials. Comprehensive subject coverage across the whole field of Smart Materials in one integrated resource In-depth explanation of the latest developments and research topics Thematically arranged to allow the user to easily find what they need
This textbook covers the fundamentals of different functional material systems aimed at advanced undergraduate and postgraduate students. Each chapter includes an introduction to the material, its applications and uses with example problems, fabrication and manufacturing techniques, conclusions, homework problems and a bibliography. Edited by a leading researcher in smart materials, topics include piezoelectric materials, magnetostrictive materials, shape memory alloys, mechanochromic materials, chemomechanical polymers and self-healing materials.
This book presents a design-driven investigation into smart materials developed by chemists, physicists, materials and chemical engineers, and applied by designers to consumer products, buildings, interfaces, or textiles. Introducing a class of smart materials (referred to as stimuli-responsive, morphing or kinetic materials) that move and change their shape in response to stimuli, the book presents their characteristics, advantages, potentials, as well as the difficulties involved in their application. The book also presents a large number of case studies on products, projects, concepts, and experiments employing smart materials, thus mapping out new design territories for these innovative materials. The case studies involve different fields of design, including product, interior, fashion, and communication design. Reflecting the growing demand for sustainable and human-centered design agendas, the book explores and reveals the role and influence of these new materials and technologies on design and human experience, and discusses how they can be used to redefine our objects and spaces so as to promote more resilient environments. The book offers an intriguing and valuable resource for design professionals, engineers, scientists and students alike.
This book provides a comprehensive introduction to the embryonic field of smart materials and structures, and also presents a state-of-the-art review of the sub-disciplines of the field. It informs readers of the technical challenges to the commercialisation of products incorporating these material technologies.
This book provides in-depth coverage of smart materials, including electroactive polymers (EAPs), synthetic muscle, pneumatic artificial muscle, soft pneumatics, hydro-muscle, and other cutting-edge transformational smart material technologies. It looks at ways smart materials respond to stimuli, such as electricity, pressure, temperature, magnetism, or light. State-of-the-art developments in EAP based actuation and pneumatics are covered, including nanotechnology, soft robotics, EAP considerations for NASA applications and thermal control of satellites, control of mirrors using dielectric elastomeric actuators, and biomimetic design and function in robotics and prosthetics. A detailed analysis of the challenges of smart materials on Earth and in space is included, with an interview about considerations and training for Missions to Moon and Mars. This book is a must-read within the smart material and space communities, from tech savvy students to industry professionals.
The use of smart materials in architecture is a dynamic and innovative area merging research, development, and use. Smart materials, with their reversible characteristics, respond to stimuli such as light, temperature, and electrical field by changing their form, color, viscosity, etc. One of the most fascinating developments is the advent of Phase Change Materials. These materials make it possible, for example, to develop self-acting, kinetic facades and wallpaper that changes its color and pattern based on temperature and light. The book presents the development of these materials and also describes their use in the contexts of architecture, design, and art. It offers a systematic overview with a detailed discussion of properties, technologies, products, and projects based on twenty groups of smart materials.
Today, architects and designers are beginning to look toward developments in new "smart" or "intelligent" materials and technologies for solutions to long-standing problems in building design. However, these new materials have so far been applied in a diverse but largely idiosyncratic nature, because relatively few architects have access to information about the types or properties of these new materials or technologies. Two of the leading experts in this field - Addington and Schodek - have solved this problem by incorporating all the relevant information of all the latest technologies available to architects and designers in this one volume. They present materials by describing their fundamental characteristics, and go on to identify and suggest how these same characteristics can be exploited by professionals to achieve their design goals. Here, the wealth of technical understanding already available in the materials science and engineering literature is at last made accessible to a design audience.
Explores State-of-the-Art Work from the World's Foremost Scientists, Engineers, Educators, and Practitioners in the FieldWhy use smart materials?Since most smart materials do not add mass, engineers can endow structures with built-in responses to a myriad of contingencies. In their various forms, these materials can adapt to their environments by c
Electrochromic Smart Materials covers major topics related to the phenomenon of electrochromism, including fundamental principles, classes and subclasses of electrochromic materials, device processing and manufacturing.
The book provides a pedagogical approach that emphasizes the physical processes of active materials and the design and control of engineering systems. It will also be a reference text for practicing engineers who might understand the basic principles of active materials but have an interest in learning more about specific applications. The text includes a number of worked examples, design problems, and homework problems (with a solutions manual) that will be useful for both instructors and practicing engineers.