Download Free Smart Grid Application Guide Book in PDF and EPUB Free Download. You can read online Smart Grid Application Guide and write the review.

Comprehensive, cross-disciplinary coverage of Smart Grid issues from global expert researchers and practitioners. This definitive reference meets the need for a large scale, high quality work reference in Smart Grid engineering which is pivotal in the development of a low-carbon energy infrastructure. Including a total of 83 articles across 3 volumes The Smart Grid Handbook is organized in to 6 sections: Vision and Drivers, Transmission, Distribution, Smart Meters and Customers, Information and Communications Technology, and Socio-Economic Issues. Key features: Written by a team representing smart grid R&D, technology deployment, standards, industry practice, and socio-economic aspects. Vision and Drivers covers the vision, definitions, evolution, and global development of the smart grid as well as new technologies and standards. The Transmission section discusses industry practice, operational experience, standards, cyber security, and grid codes. The Distribution section introduces distribution systems and the system configurations in different countries and different load areas served by the grid. The Smart Meters and Customers section assesses how smart meters enable the customers to interact with the power grid. Socio-economic issues and information and communications technology requirements are covered in dedicated articles.The Smart Grid Handbook will meet the need for a high quality reference work to support advanced study and research in the field of electrical power generation, transmission and distribution. It will be an essential reference for regulators and government officials, testing laboratories and certification organizations, and engineers and researchers in Smart Grid-related industries.
Electric power systems worldwide face radical transformation with the need to decarbonise electricity supply, replace ageing assets and harness new information and communication technologies (ICT). The Smart Grid uses advanced ICT to control next generation power systems reliably and efficiently. This authoritative guide demonstrates the importance of the Smart Grid and shows how ICT will extend beyond transmission voltages to distribution networks and customer-level operation through Smart Meters and Smart Homes. Smart Grid Technology and Applications: Clearly unravels the evolving Smart Grid concept with extensive illustrations and practical examples. Describes the spectrum of key enabling technologies required for the realisation of the Smart Grid with worked examples to illustrate the applications. Enables readers to engage with the immediate development of the power system and take part in the debate over the future Smart Grid. Introduces the constituent topics from first principles, assuming only a basic knowledge of mathematics, circuits and power systems. Brings together the expertise of a highly experienced and international author team from the UK, Sri Lanka, China and Japan. Electrical, electronics and computer engineering researchers, practitioners and consultants working in inter-disciplinary Smart Grid RD&D will significantly enhance their knowledge through this reference. The tutorial style will greatly benefit final year undergraduate and master’s students as the curriculum increasing focuses on the breadth of technologies that contribute to Smart Grid realisation.
The comprehensive and authoritative guide to power electronics in renewable energy systems Power electronics plays a significant role in modern industrial automation and high- efficiency energy systems. With contributions from an international group of noted experts, Power Electronics in Renewable Energy Systems and Smart Grid: Technology and Applications offers a comprehensive review of the technology and applications of power electronics in renewable energy systems and smart grids. The authors cover information on a variety of energy systems including wind, solar, ocean, and geothermal energy systems as well as fuel cell systems and bulk energy storage systems. They also examine smart grid elements, modeling, simulation, control, and AI applications. The book's twelve chapters offer an application-oriented and tutorial viewpoint and also contain technology status review. In addition, the book contains illustrative examples of applications and discussions of future perspectives. This important resource: Includes descriptions of power semiconductor devices, two level and multilevel converters, HVDC systems, FACTS, and more Offers discussions on various energy systems such as wind, solar, ocean, and geothermal energy systems, and also fuel cell systems and bulk energy storage systems Explores smart grid elements, modeling, simulation, control, and AI applications Contains state-of-the-art technologies and future perspectives Provides the expertise of international authorities in the field Written for graduate students, professors in power electronics, and industry engineers, Power Electronics in Renewable Energy Systems and Smart Grid: Technology and Applications offers an up-to-date guide to technology and applications of a wide-range of power electronics in energy systems and smart grids.
For many, smart grids are the biggest technological revolution since the Internet. They have the potential to reduce carbon dioxide emissions, increase the reliability of electricity supply, and increase the efficiency of our energy infrastructure. Smart Grid Applications, Communications, and Security explains how diverse technologies play hand-in-hand in building and maintaining smart grids around the globe. The book delves into the communication aspects of smart grids, provides incredible insight into power electronics, sensing, monitoring, and control technologies, and points out the potential for new technologies and markets. Extensively cross-referenced, the book contains comprehensive coverage in four major parts: Part I: Applications provides a detailed introduction to smart grid applications—spanning the transmission, distribution, and consumer side of the electricity grid Part II: Communications discusses wireless, wireline, and optical communication solutions—from the physical layers up to sensing, automation, and control protocols running on the application layers Part III: Security deals with cyber security—sharpening the awareness of security threats, reviewing the ongoing standardization, and outlining the future of authentication and encryption key management Part IV: Case Studies and Field Trials presents self-contained chapters of studies where the smart grid of tomorrow has already been put into practice With contributions from major industry stakeholders such as Siemens, Cisco, ABB, and Motorola, this is the ideal book for both engineering professionals and students.
A fully comprehensive introduction to smart grid standards and their applications for developers, consumers and service providers The critical role of standards for smart grid has already been realized by world-wide governments and industrial organizations. There are hundreds of standards for Smart Grid which have been developed in parallel by different organizations. It is therefore necessary to arrange those standards in such a way that it is easier for readers to easily understand and select a particular standard according to their requirements without going into the depth of each standard, which often spans from hundreds to thousands of pages. The book will allow people in the smart grid areas and in the related industries to easily understand the fundamental standards of smart grid, and quickly find the building-block standards they need from hundreds of standards for implementing a smart grid system. The authors highlight the most advanced works and efforts now under way to realize an integrated and interoperable smart grid, such as the “NIST Framework and Roadmap for Smart Grid Interoperability Standards Release 2.0”, the” IEC Smart Grid Standardization Roadmap”, the ISO/IEC’s “Smart Grid Standards for Residential Customers”, the ZigBee/HomePlug’s “Smart Energy Profile Specification 2.0”, IEEE’s P2030 “Draft Guide for Smart Grid Interoperability of Energy Technology and Information Technology Operation with the Electric Power System (EPS), and End-Use Applications and Loads”, and the latest joint research project results between the world’s two largest economies, US and China. The book enables readers to fully understand the latest achievements and ongoing technical works of smart grid standards, and assist industry utilities, vendors, academia, regulators, and other smart grid stakeholders in future decision making. The book begins with an overview of the smart grid, and introduces the opportunities in both developed and developing countries. It then examines the standards for power grid domain of the smart grid, including standards for blackout prevention and energy management, smart transmission, advanced distribution management and automation, smart substation automation, and condition monitoring. Communication and security standards as a whole are the backbone of smart grid and their standards, including those for wired and wireless communications, are then assessed. Finally the authors consider the standards and on-going work and efforts for interoperability and integration between different standards and networks, including the latest joint research effort between the world’s two largest economies, US and China. A fully comprehensive introduction to smart grid standards and their applications for developers, consumers and service providers Covers all up-to-date standards of smart grid, including the key standards from NIST, IEC, ISO ZigBee, IEEE, HomePlug, SAE, and other international and regional standardization organizations. The Appendix summarizes all of the standards mentioned in the book Presents standards for renewable energy and smart generation, covering wind energy, solar voltaic, fuel cells, pumped storage, distributed generation, and nuclear generation standards. Standards for other alternative sources of energy such as geothermal energy, and bioenergy are briefly introduced Introduces the standards for smart storage and plug-in electric vehicles, including standards for distributed energy resources (DER), electric storage, and E-mobility/plug-in vehicles The book is written in an accessible style, ideal as an introduction to the topic, yet contains sufficient detail and research to appeal to the more advanced and specialist reader.
A complete guide to smart grid networking and communications for energy engineers With contributions from more than 30 experts, Smart Grid Infrastructure & Networking describes cutting-edge technologies for connecting the electrical power infrastructure to modern, computerized communications networks. The book offers essential information on standardization, applications, protocols, automation, architecture, and management. Key topics such as bidirectional communication, automation, renewable energy integration, wireless sensor networks, and more are discussed in this practical, comprehensive resource. COVERAGE INCLUDES: * Demand-side energy management * The modernization of distribution automation featuring intelligent FDIR and volt-var optimization Advanced asset management * Wide-area early warning systems * The integration of renewable energy sources into smart grids * The microgrid in the electric system transformation * Enhancing the integration of renewables in radial distribution networks through smart links * Voltage-based control of DG units and active loads in smart microgrids * Electric vehicles in a smart grid environment * Low-voltage, DC grid–powered LED lighting system with smart ambient sensor control for energy conservation in green building * Multiple distributed smart microgrids with a self-autonomous, energy harvesting wireless sensor network * Wireless sensor networks for consumer applications in the smart grid * ZigBee-based wireless monitoring and control system for smart grids
As power generation and demand develops, adopting and integrating communication and information technology to improve the reliability, efficiency and sustainability of power networks becomes essential. With the US Smart Grid market having doubled in size between 2009 and 2014, this concise book, written by a leading industry researcher, is very timely. This book is a handbook for advanced applications design and integration of new and future technologies into Smart Grids for researchers and engineers in academia and industry, looking to pull together disparate technologies and apply them for greater gains. The book covers Smart Grids as the midpoint in the generation, storage, transmission and distribution process through to database management, communication technologies, intelligent devices and synchronisation.
The textbook provides a comprehensive overview of smart grids, their role in the development of electricity systems, as well as issues and problems related to smart grid evolution, operation, management, control, protection, entities, and components. The book is divided in eleven chapters, covering core topics such as energy, and environmental issues, basic of power systems, and introduction to renewable energy, distributed generation and energy storage, smart grid challenges, benefits, and divers, smart power transmission and distribution. It includes chapters focusing on smart grid communication, power flow analysis, smart grid design tools, energy management and microgrids. Each chapter ends with several practical and advanced problems that instilling critical thinking and applies to industrial applications. The book can be used as an introductory and basic textbook, reference and training resource by engineers, students, faculty, and interested readers to gain the essential knowledge of the power and energy systems, smart grid fundamentals, concepts and features, as well as the main energy technologies, including how they work and operate, characteristics, and they are evaluated and selected for specific applications.
Practical Guidance for Defi ning a Smart Grid Modernization Strategy: The Case of Distribution guides stakeholders on how utilities can defi ne their own smart grid vision, identify priorities, and structure investment plans. While most of these strategic aspects apply to any area of the electricity grid, the book focuses on distribution. The guidance includes key building blocks for modernizing the distribution grid and provides examples of grid modernization projects. This revised edition also includes key communication system requirements to support a well-functioning grid. The concept of the smart grid is relevant to all grids. What varies are the magnitude and type of the incremental steps toward modernization for achieving a specifi c smart grid vision. A utility that is at a relatively low level of grid modernization may leapfrog one or more levels of modernization to achieve some of the benefi ts of the highest levels of grid modernization. Smart grids impact electric distribution systems signifi cantly. In developing countries, modernizing the distribution grid promises to benefi t the operation of electric distribution utilities in many and various ways. These benefi ts include improved operational effi ciency (such as reduced losses and lower energy consumption), reduced peak demand, improved service reliability, and ability to accommodate distributed generating resources without adversely impacting overall power quality. Practical Guidance for Defi ning a Smart Grid Modernization Strategy concludes by describing funding and regulatory issues that may need to be taken into account when developing smart grid plans. The World Bank Studies series is available for free download online through the Open Knowledge Repository (https://openknowledge.worldbank.org).