Download Free Small Molecule Binding To Electrophilic Trigonal Pyramidal Platinum Palladium And Nickel Book in PDF and EPUB Free Download. You can read online Small Molecule Binding To Electrophilic Trigonal Pyramidal Platinum Palladium And Nickel and write the review.

Chapter 1 A general introduction to the concepts and background of several types of transition metal complexes that motivate and inform the research described herein. These include a-complexes and molecular adducts of dinitrogen, dihydrogen, and carbon dioxide. Chapter 2 Trigonal bipyramidal platinum(II) complexes of the monoanionic, tetradentate, triphosphine [SiPR3 ([SiP3R]- = [(2-R2PC6H4)3Si]-; R = Ph, iPr) ligand are prepared and shown to provide access to cationic species with divergent behavior. The less electron-rich phenyl-substituted ligand renders the platinum center extremely electrophilic, leading to structurally characterized examples of weakly-donating ligands bound in the fifth, apical coordination site. Of particular interest is the structure of the toluene adduct, which suggests a possible interaction between the platinum center and an aryl C-H bond. When the ligand phosphines are instead substituted by the more electron-rich isopropyl groups, the electrophilicity of the cationic platinum is shown to be mitigated, allowing access to a four-coordinate, trigonal pyramidal platinum center. The crystallographically characterized geometry for this divalent platinum is in contrast to the canonical square planar configuration for d8, 16-electron transition metal complexes. The palladium analogue is also synthesized and shown to possess the same coordination. Chapter 3 Cationic nickel complexes of the [SiPR3] ligand are synthesized and, in contrast to their platinum and palladium congeners, facilitate the surprising binding of molecular dinitrogen to electrophilic nickel(II) centers. The extremely high stretching frequencies of these bound N2 moieties attest to their minimal activation, and the stability of these complexes is shown to arise from increased adonation from the N2 to the cationic nickel center, which compensates for the relative lack of it back-bonding that stabilizes N2 adducts in less electrophilic systems. These cationic nickel species are additionally shown to form thermally stable adducts of molecular dihydrogen. The relative binding strengths of N2 and H2 to these nickel centers are explored and shown to be modulated by the ligand phosphine substituents. Furthermore, evidence of linear binding of carbon dioxide is presented, representing an electrophilic approach to carbon dioxide activation that is in contrast to the low-valent, nucleophilic metal paradigm. Chapter 4 The four-coordinate neutral nickel boratrane (TPiPrB = (2-iPr2PC6H4)3B) reported in the literature represents an isostructural counterpart to the cationic {[SiiPr3]Ni}+ species presented in Chapter 3. Though these two compounds are formally separated by two oxidation states of nickel, the Lewis-acidic nature of the Z-type borane ligand in (TP'PrB)Ni renders it valence-isoelectronic with {[SiiPr3]Ni}+. The reactivity toward N2 and H2 of (TPiPr'B)Ni, as well as that of the new compound (TPPhB)Ni, is explored and discussed in context of what is observed for the {[SiPR3]Ni}+ system. The neutral (TPiPr'B)Ni, while presumably a better [pi] back-bonder than cationic {I[SiPip' 3]Ni}T, is demonstrated not to bind N2, though a very weak, fluxional interaction with H2 at low temperature is hypothesized. The more electrophilic (TP PhB)Ni exhibits room temperature interactions with both N2 and H2, though the nature of these interactions has yet to be confirmed. These results thus underline the importance of [sigma]-donation in stabilizing N2 and H2 adducts of poorly 7r back-bonding metal centers. Chapter 5 Cobalt(I) complexes of [SiPR3] provide an additional isostructural, isoelectronic point of comparison to the cationic nickel species presented in Chapter 3. The dinitrogen adducts [SiP'i' 3]Co(N2) and [SiPPh3]Co(N2), previously reported from our laboratory, feature strongly bound N2 ligands that are not labile to vacuum. The corresponding dihydrogen adducts are generated slowly under an H2 atmosphere. The intact nature of both dihydrogen ligands, which also are not labile to vacuum, is reflected in their NMR spectroscopic parameters. The thermal stability of these compounds enabled crystallization of [SiPi'' 3]Co(H2) which, along with the related (TP'i'B)Co(H2) complex also developed in our laboratory, represent the first structurally characterized dihydrogen adducts of cobalt. Additional comparisons are made between the relative N2 and H2 binding strengths of this system and those of the structurally and electronically related family of [SiPR3] and (TpRB) metal complexes. Appendix A The asymmetric dinucleating ligand [NOPPh], designed to contain both a hard, N-donor binding site and a soft-P-donor binding site, is synthesized and shown to form a diiron complex that features asymmetric bonding to the bridging acetates. The corresponding symmetric, allphosphine dinucleating ligand [POPPh], proves to be more conducive to further study, and provides access to the symmetric diiron, di-([mu]-bromide) starting material {[POPPh ]Fe 2Br2} {BArF4 }. Addition of hydrazine generates the asymmetric, unbridged N2H4 adduct, which features localized diamagnetic and paramagnetic iron centers. The conformation of this species additionally demonstrates the flexibility of this ligand framework. Reduction of the diiron(II) starting material in the presence of PMe3 results in formation of a putative asymmetric iron(O)/iron(I) dimetallic complex, in which an N2 molecule is bound to the diamagnetic iron center, while the PMe3 is ligated to the high-spin iron center and rendered NMR silent. The N2 ligand is shown to be reversibly displaced by H2 , suggesting the formation of a dihydrogen adduct, as well as by CO2, which is postulated to bind as a bent, [eta]2(C,O) ligand.
Fully updated and expanded to reflect recent advances, this Fourth Edition of the classic text provides students and professional chemists with an excellent introduction to the principles and general properties of organometallic compounds, as well as including practical information on reaction mechanisms and detailed descriptions of contemporary applications.
This book aims to overview the role of non-covalent interactions, such as hydrogen and halogen bonding, π-π, π-anion and electrostatic interactions, hydrophobic effects and van der Waals forces in the synthesis of organic and inorganic compounds, as well as in design of new crystals and function materials. The proposed book should allow to combine, in a systematic way, recent advances on the application of non-covalent interactions in synthesis and design of new compounds and functional materials with significance in Inorganic, Organic, Coordination, Organometallic, Pharmaceutical, Biological and Material Chemistries. Therefore, it should present a multi- and interdisciplinary character assuring a rather broad scope. We believe it will be of interest to a wide range of academic and research staff concerning the synthesis of new compounds, catalysis and materials. Each chapter will be written by authors who are well known experts in their respective fields.
For the first time, the whole field of organoboronic acids is presented in one comprehensive handbook. Professor Dennis Hall, a rising star within the community, covers all aspects of this important substance class, including applications in chemistry, biology and medicine. Starting with an introduction to the structure, properties, and preparation of boronic acid derivatives, together with an overview of their reactions and applications, the book goes on to look at metal-catalyzed borylation of alkanes and arenas, coupling reactions and rhodium-catalyzed additions of boronic acids to alkenes and carbonyl compounds. There follows chapters on copper-promoted C-O and C-N cross-coupling of boronic acids, recent applications in organic synthesis, as well as alpha-haloalkylboronic esters in asymmetric synthesis. Later sections deal with cycloadditions, organoboronic acids, oxazaborolidines as asymmetric inducers, and boronic acid based receptors and sensors. The whole is rounded off with experimental procedures, making this invaluable reading for organic, catalytic and medicinal chemists, as well as those working in organometallics.
Fluorine: A Paradoxical Element, Volume Five, deals with the link between fluorine, humanity and the environment. It is divided into three main sections, including i) The history and developmental stages of fluorinated products, ii) Awareness of its importance in our environment, and iii) Recent contributions of fluoride products in medicine, pharmacy and our daily lives. Made engaging through interesting figures and accessible language, and written by a leading expert, Professor Tressaud, the book supports the work of scientists working in materials, toxicology and environmental science. It complements the author’s edited series, Progress in Fluorine Science, covering recent advances. Describes background and contextual information regarding the history, development of understanding, and applications of this important element Explores the impacts of fluorine, both positive and negative, in the environment and biological systems Includes applied, real-world information from agencies, such as CNRS, NASA, HWS and DOH
Pincer complexes are formed by the binding of a chemical structure to a metal atom with at least one carbon-metal bond. Usually the metal atom has three bonds to a chemical backbone, enclosing the atom like a pincer. The resulting structure protects the metal atom and gives it unique properties.The last decade has witnessed the continuous growth in the development of pincer complexes. These species have passed from being curiosity compounds to chemical chameleons able to perform a wide variety of applications. Their unique metal bound structures provide some of the most active catalysts yet known for organic transformations involving the activation of bonds. The Chemistry of Pincer Compounds details use of pincer compounds including homogeneous catalysis, enantioselective organic transformations, the activation of strong bonds, the biological importance of pincer compounds as potential therapeutic or pharmaceutical agents, dendrimeric and supported materials. * Describes the chemistry and applications of this important class of organometallic and coordination compounds* Covers the areas in which pincer complexes have had an impact* Includes information on more recent and interesting pincer compounds not just those that are well-known
Gerard van Koten: The Mono-anionic ECE-Pincer Ligand - a Versatile Privileged Ligand Platform: General Considerations.- Elena Poverenov, David Milstein: Non-Innocent Behavior of PCP and PCN Pincer Ligands of Late Metal Complexes.- Dean M. Roddick: Tuning of PCP Pincer Ligand Electronic and Steric Properties.- Gemma R. Freeman, J. A. Gareth Williams: Metal Complexes of Pincer Ligands: Excited States, Photochemistry, and Luminescence.- Davit Zargarian, Annie Castonguay, Denis M. Spasyuk: ECE-Type Pincer Complexes of Nickel.- Roman Jambor and Libor Dostál: The Chemistry of Pincer Complexes of 13 - 15 Main Group Elements.- Kálmán J. Szabo: Pincer Complexes as Catalysts in Organic Chemistry.- Jun-ichi Ito and Hisao Nishiyama: Optically Active Bis(oxazolinyl)phenyl Metal Complexes as Multi-potent Catalysts.- Anthony St. John, Karen I. Goldberg, and D. Michael Heinekey: Pincer Complexes as Catalysts for Amine Borane Dehydrogenation.- Dmitri Gelman and Ronit Romm: PC(sp3)P Transition Metal Pincer Complexes: Properties and Catalytic Applications.- Jennifer Hawk and Steve Craig: Physical Applications of Pincer Complexes.
Comprehensive Coordination Chemistry II (CCC II) is the sequel to what has become a classic in the field, Comprehensive Coordination Chemistry, published in 1987. CCC II builds on the first and surveys new developments authoritatively in over 200 newly comissioned chapters, with an emphasis on current trends in biology, materials science and other areas of contemporary scientific interest.
With an enormous velocity, olefin polymerization has expanded to one of the most significant fields in polymers since the first industrial use about 50 years ago. In 2005, 100 million tons of polyolefins were produced - the biggest part was catalyzed by metallorganic compounds. The Hamburg Macromolecular Symposium 2005 with the title "Olefin Polymerization" involved topics such as new catalysts and cocatalysts, kinetics, mechanism and polymer reaction engineering, synthesis of special polymers, and characterization of polyolefins. The conference combined scientists from different disciplines to discuss latest research results of polymers and to offer each other the possibility of cooperation. This is reflected in this volume, which contains invited lectures and selected posters presented at the symposium.
This book comprehensively covers iodine, its chemistry, and its role in functional materials, reagents, and compounds. • Provides an up-to-date, detailed overview of iodine chemistry with discussion on elemental aspects: characteristics, properties, iodides, and halogen bonding • Acts as a useful guide for readers to learn how to synthesize complex compounds using iodine reagents or intermediates • Describes traditional and modern processing techniques, such as starch, cupper, blowing out, and ion exchange resin methods • Includes seven detailed sections devoted to the applications of iodine: Characteristics, Production, Synthesis, Biological Applications, Industrial Applications, Bioorganic Chemistry and Environmental Chemistry, and Radioisotopes • Features hot topics in the field, such as hypervalent iodine-mediated cross coupling reactions, agrochemicals, dye sensitized solar cells, and therapeutic agents