Download Free Size Dependent Molecular Level Characterization Of Secondary Organic Aerosol From No3 Initiated Carene Oxidation Using Nanospray Desorption Electrospray Ionization High Resolution Mass Spectrometry Book in PDF and EPUB Free Download. You can read online Size Dependent Molecular Level Characterization Of Secondary Organic Aerosol From No3 Initiated Carene Oxidation Using Nanospray Desorption Electrospray Ionization High Resolution Mass Spectrometry and write the review.

Organic aerosols comprise hundreds, if not thousands, of distinct chemical compounds. Traditional analytical techniques for analysis of chemical composition lack the ability to completely characterize complex mixtures such as organic aerosol. Until recently, the best available methods could only provide information on selected aerosol compounds, on selected groups of compounds, or on sample-averaged elemental ratios. Such experimental limitations posed significant barriers to understanding the detailed chemical composition of organic aerosols and its atmospheric evolution. The unique HR ESI-MS methods developed in this research are able to not only characterize the organic aerosols average elemental ratios, but also simultaneously obtain information about hundreds or even thousands of individual compounds in organic aerosols. One of the key achievements of this work was the development of new methods for classification of individual compounds in organic aerosols by their functional groups using reactive HR ESI-MS. This contribution made it possible to track organic aerosols throughout their atmospheric evolution via functional group composition and average elemental ratios while still retaining the chemical composition of each individual compound. Other important scientific advances described in this thesis include: complete characterization of the chemical composition of limonene SOA as a function of particle size and reaction time; adaptation of PILS (particle-into-liquid sampler) to the HR ESI-MS platform; chemical characterization of the water soluble component of several types of organic aerosols; the effects of photochemical aging on the water soluble component of limonene SOA through characterization of the optical properties coupled with chemical composition; and investigation of photochemistry of carbonyls in model SOA matrices. The research included in this dissertation reviews the development of unique aerosol characterization tools utilizing the facilities at UCI and the Environmental Molecular Sciences Laboratory at the Pacific Northwest National Laboratory. The research project answered important questions regarding organic aerosol formation, evolution, and chemical composition that impact the direct and indirect influences of aerosols on Earth's climate.
The guiding question to this research is: To what extent and by what mechanisms do biogenic volatile organic compounds contribute to atmospheric aerosol mass? To address this question we need to understand the chemistry that produces condensable vapors which when in the presence of particles may partition onto the aerosol surface depending on their chemical and physical properties. I developed an insitu gas and aerosol sampling system, the FIGAERO (Filter Inlet for Gases and AEROsol) to speciate gas and particle phase organics derived from photochemical reactions with biogenic volatile organic compounds under both field and laboratory conditions. By coupling the FIGAERO to a High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometer (HR-TOF-CIMS) I am able to elucidate chemical pathways by identifying elemental compositions and in some cases functional groups present in the detected molecular ions. The coupling of the FIGAERO to the HR-TOF-CIMS also allows the estimation of effective vapor pressures of the aerosol components and this information can be used to improve vapor pressure models and test associated partitioning theories and parameterizations. The approach also provides hundreds of speciated chemical tracers that can be correlated with traditional environmental and chemical measurements (e.g AMS, NOx, SO2, SMPS, VOC) to help derive sources and sinks and to constrain the mechanisms responsible for the formation and growth of organic aerosol. Measurements obtained across a wide range of conditions and locations allowing connections and contrasts between different chemical systems, providing insights into generally controlling factors of secondary organic aerosol (SOA) and its properties.
Secondary organic aerosol (SOA) are important components in atmospheric processes and significantly impact human health. The complexity of SOA composition and formation processes has hampered efforts to fully characterize their impacts, and to predict how those impacts will be affected by changes in climate and human activity. Here, we explore SOA formation in the laboratory by coupling an environmental chamber with a suite of analytical tools, including a gas-phase mass spectrometry technique that is well suited for tracking the hydrocarbon oxidation processes that drive SOA formation. Focusing on the oxidation of isoprene by the nitrate radical, NO3, we find that reactions of peroxy radicals (RO2) to form ROOR dimers is an important process in SOA formation. The other gas-phase products of these RO2 reactions differ from what is expected from studies of simpler radicals, indicating that more studies are necessary to fully constrain RO2 chemistry. Finally, we examine the role of heterogeneous oxidation as a sink of organic aerosol and a source of oxygenated volatile organic compounds in the free troposphere.
Abstract : The natural environment is replete with organic matter of varying complexities. Whether it is particulate material in the atmosphere, decades old organic matter trapped within glaciers, or biological debris flowing with rivers and streams, natural organic matter (NOM) is exquisitely complex. High-resolution mass spectrometry allows us to have a glimpse of the molecular composition of NOM and delineate the elemental compositions of thousands of chemical species that form it. In this dissertation, the overarching aim was to explore the molecular diversity of complex mixtures from two sources: Surface water and atmospheric organic aerosol. The first objective of this dissertation was to demonstrate ionization selectivity of three popular ionization methods so that the necessity of using more than one technique for untargeted qualitative analysis of complex mixtures could be validated. Electrospray ionization (ESI), atmospheric pressure photoionization (APPI), and atmospheric pressure chemical ionization (APCI) were tested on commercial humic substances in combination with the Fourier Transform - Orbitrap Elite Mass Spectrometer. Our findings provide evidence for the tendency of ESI to access polar, more oxygenated compounds that constitute a majority of humic substances. A minor fraction comprising relatively less polar, aromatic compounds, could be accessed with either APPI or APCI, highlighting the importance of employing complementary ionization methods to obtain representative molecular compositions of complex mixtures. The second objective of this dissertation was to demonstrate the extreme molecular complexity of organic aerosol collected downwind of wildfires in the Pacific Northwest of the United States. The focus was particularly on the fraction of organic aerosol that had aged to develop an abundance of tar balls (TB) that are carbonaceous spherules of extremely variable optical properties and whose detailed molecular composition is yet to be elucidated. We attempted to find a preliminary TB-specific molecular signature by comparing several TB-rich and non-TB aerosol mixtures. Using Fourier Transform - Ion Cyclotron Resonance Mass Spectrometers and complementary ionization techniques, ESI and laser desorption ionization, we present detailed molecular composition of TB, which indicates them to be a mixture of low-oxygen organic constituents enclosed in a more oxidatively aged shell.
Oxidation of volatile organic compounds (VOC) in the atmosphere leads to the formation of secondary organic aerosol (SOA), which can have extensive impacts on air quality, health, and climate. Existing air quality models used to describe the fate of ambient organic aerosol tend to underpredict the aerosol oxidation state. In addition, modeled concentrations of nitrogen oxides (NO [subscript x]) and other reactive nitrogen compounds (NO [subscript y]), including alkyl nitrates, often deviate from field observations. Certain SOA formation pathways, SOA ageing mechanisms, and alkyl nitrate decay mechanisms may be missing. Recent field studies show that NO [subscript x]-mediated heterogeneous production of nitryl chloride, ClNO2, could provide a ubiquitous source for chlorine atoms. Little is known about the role of chlorine atoms in SOA formation and ageing, or their interaction with other anthropogenic emissions found in polluted environments, where alkane oxidation chemistry is important. Environmental chamber experiments are carried out to address knowledge gaps in atmospheric chlorine and alkane oxidation chemistry. Results show that chlorine-initiated oxidation of isoprene leads to SOA formation, organic chloride formation, and possibly secondary HO [subscript x] chemistry. Alkane-derived alkyl nitrate compounds are found not to hydrolyze appreciably in humid environments or in the presence of acidic aerosol. Uptake of inorganic nitrate and inorganic chloride are observed in the presence of deliquescent particles. Chlorine-initiated oxidation of linear alkanes is shown to result in prompt SOA formation and delayed organic chloride formation, which is enabled by the addition of chlorine radical to dihydrofuran, a heterogeneously produced multi-generational oxidation product. Improvements are made for the detection of organic chloride using aerosol mass spectrometry, and for aerosol volatility measurements using temperature programmed thermal desorption techniques. A two-dimensional thermogram framework is developed to visualize aerosol composition, aerosol volatility, and thermal fragmentation simultaneously
The photooxidation of volatile organic compounds (VOCs) in the atmosphere can lead to the formation of secondary organic aerosol (SOA), a major component of fine particulate matter. Improvements to air quality require insight into the many reactive intermediates that lead to SOA formation, of which only a small fraction have been measured at the molecular level. This thesis describes the chemistry of secondary organic aerosol (SOA) formation from several atmospherically relevant hydrocarbon precursors. Photooxidation experiments of methoxyphenol and phenolic compounds and C12 alkanes were conducted in the Caltech Environmental Chamber. These experiments include the first photooxidation studies of these precursors run under sufficiently low NOx levels, such that RO2 + HO2 chemistry dominates, an important chemical regime in the atmosphere. Using online Chemical Ionization Mass Spectrometery (CIMS), key gas-phase intermediates that lead to SOA formation in these systems were identified. With complementary particle-phase analyses, chemical mechanisms elucidating the SOA formation from these compounds are proposed. Three methoxyphenol species (phenol, guaiacol, and syringol) were studied to model potential photooxidation schemes of biomass burning intermediates. SOA yields (ratio of mass of SOA formed to mass of primary organic reacted) exceeding 25% are observed. Aerosol growth is rapid and linear with the organic conversion, consistent with the formation of essentially non-volatile products. Gas and aerosol-phase oxidation products from the guaiacol system show that the chemical mechanism consists of highly oxidized aromatic species in the particle phase. Syringol SOA yields are lower than that of phenol and guaiacol, likely due to unique chemistry dependent on methoxy group position. The photooxidation of several C12 alkanes of varying structure n-dodecane, 2-methylundecane, cyclododecane, and hexylcyclohexane) were run under extended OH exposure to investigate the effect of molecular structure on SOA yields and photochemical aging. Peroxyhemiacetal formation from the reactions of several multifunctional hydroperoxides and aldehyde intermediates was found to be central to organic growth in all systems, and SOA yields increased with cyclic character of the starting hydrocarbon. All of these studies provide direction for future experiments and modeling in order to lessen outstanding discrepancies between predicted and measured SOA.
Abstract : Organic aerosol affects human health and climate. These effects are largely determined by the composition of the organic aerosol, which is a complex mixture of species. Understanding the complexity of organic aerosol is critical to determining its effect on human health and climate. In this study, long range transported organic aerosol collected at the Pico Mountain Observatory was analyzed using ultrahigh resolution mass spectrometry. Organic aerosol transported in the free troposphere had an overall lower extent of oxidation than aerosol transported in the boundary layer. It was hypothesized that the lower oxidation was related to a more viscous phase state of the aerosol during transport. The results suggest that biomass burning organic aerosol injected into the free troposphere are more persistent than organic aerosol in the boundary layer. A sample was also analyzed using tandem FT-ICR MS/MS fragmentation, providing information about the functional group composition in the aerosol sample. This was done using a segmented scan approach, which revealed an unprecedented molecular complexity of unfragmented precursor ions. In addition to the expected CO2 and H2O neutral losses, neutral losses corresponding to carbonyl functional groups (C2H4O, CO) were observed. The abundance of carbonyl functional groups suggests a slower rate of aging in the atmosphere. Analysis of nitrogen and sulfur containing neutral losses highlighted a surprising abundance of reduced nitrogen and sulfur loss (NH3 and SH2). This further supports the hypothesis of slower aging in the free troposphere. Additional research was done to develop an R software package (MFAssignR) to perform molecular formula assignment with improved decision-making transparency, noise estimation, isotope identification, and mass recalibration. MFAssignR was found to assign the same molecular formula as other molecular formula assignment methods for the majority (97-99%) of mass peaks that were assigned a molecular formula by the compared methods. Additionally, MFAssignR was more effective at assigning molecular formulas to low intensity peaks relative to the other methods tested, leading to more overall molecular formula assignments. MFAssignR is available via GitHub and is the first open source package to contain a full pipeline of functions for data preparation and analysis for ultrahigh resolution mass spectrometry.