Download Free Single Variable Book in PDF and EPUB Free Download. You can read online Single Variable and write the review.

This book goes beyond the basics of a first course in calculus to reveal the power and richness of the subject. Standard topics from calculus — such as the real numbers, differentiation and integration, mean value theorems, the exponential function — are reviewed and elucidated before digging into a deeper exploration of theory and applications, such as the AGM inequality, convexity, the art of integration, and explicit formulas for π. Further topics and examples are introduced through a plethora of exercises that both challenge and delight the reader. While the reader is thereby exposed to the many threads of calculus, the coherence of the subject is preserved throughout by an emphasis on patterns of development, of proof and argumentation, and of generalization. More Calculus of a Single Variable is suitable as a text for a course in advanced calculus, as a supplementary text for courses in analysis, and for self-study by students, instructors, and, indeed, all connoisseurs of ingenious calculations.
James Stewart continues to set the standard for the course while adding new diagnostic tools, carefully revised content, and all-new course management tools build on the foundation of his renowned content.
The book is a comprehensive yet compressed entry-level introduction on single variable calculus, focusing on the concepts and applications of limits, continuity, derivative, defi nite integral, series, sequences and approximations. Chapters are arranged to outline the essence of each topic and to address learning diffi culties, making it suitable for students and lecturers in mathematics, physics and engineering. Contents Prerequisites for calculus Limits and continuity The derivative Applications of the derivative The definite integral Techniques for integration and improper integrals Applications of the definite integral Infinite series, sequences, and approximations
Written by three gifted-and funny-teachers, How to Ace Calculus provides humorous and readable explanations of the key topics of calculus without the technical details and fine print that would be found in a more formal text. Capturing the tone of students exchanging ideas among themselves, this unique guide also explains how calculus is taught, how to get the best teachers, what to study, and what is likely to be on exams-all the tricks of the trade that will make learning the material of first-semester calculus a piece of cake. Funny, irreverent, and flexible, How to Ace Calculus shows why learning calculus can be not only a mind-expanding experience but also fantastic fun.
The book “Single variable Differential and Integral Calculus” is an interesting text book for students of mathematics and physics programs, and a reference book for graduate students in any engineering field. This book is unique in the field of mathematical analysis in content and in style. It aims to define, compare and discuss topics in single variable differential and integral calculus, as well as giving application examples in important business fields. Some elementary concepts such as the power of a set, cardinality, measure theory, measurable functions are introduced. It also covers real and complex numbers, vector spaces, topological properties of sets, series and sequences of functions (including complex-valued functions and functions of a complex variable), polynomials and interpolation and extrema of functions. Although analysis is based on the single variable models and applications, theorems and examples are all set to be converted to multi variable extensions. For example, Newton, Riemann, Stieltjes and Lebesque integrals are studied together and compared.
The strengths of these texts are characterized by mathematical integrity, comprehensive discussions of the concepts of calculus, and an impressively large collection of worked examples and illustrative figures.
A revision of the best selling innovative Calculus text on the market. Functions are presented graphically, numerically, algebraically, and verbally to give readers the benefit of alternate interpretations. The text is problem driven with exceptional exercises based on real world applications from engineering, physics, life sciences, and economics. Revised edition features new sections on limits and continuity, limits, l'Hopital's Rule, and relative growth rates, and hyperbolic functions.
Based on courses given at Eötvös Loránd University (Hungary) over the past 30 years, this introductory textbook develops the central concepts of the analysis of functions of one variable — systematically, with many examples and illustrations, and in a manner that builds upon, and sharpens, the student’s mathematical intuition. The book provides a solid grounding in the basics of logic and proofs, sets, and real numbers, in preparation for a study of the main topics: limits, continuity, rational functions and transcendental functions, differentiation, and integration. Numerous applications to other areas of mathematics, and to physics, are given, thereby demonstrating the practical scope and power of the theoretical concepts treated. In the spirit of learning-by-doing, Real Analysis includes more than 500 engaging exercises for the student keen on mastering the basics of analysis. The wealth of material, and modular organization, of the book make it adaptable as a textbook for courses of various levels; the hints and solutions provided for the more challenging exercises make it ideal for independent study.