Download Free Single Objective Linear Goal Programming Problem With Neutrosophic Numbers Book in PDF and EPUB Free Download. You can read online Single Objective Linear Goal Programming Problem With Neutrosophic Numbers and write the review.

This paper deals with single-objective linear goal programming problem with neutrosophic numbers. The coefficients of objective function and the constraints are considered as neutrosophic numbers of the form (p + qI), where p, q are real numbers and I denotes indeterminacy. In the solution process, the neutrosophic numbers are transformed into interval numbers.
In the paper, we propose an alternative strategy for multi-level linear programming (MLP) problem with neutrosophic numbers through goal programming strategy. Multi-level linear programming problem consists of k levels where there is an upper level at the first level and multiple lower levels at the second level with one objective function at every level.
The paper presents a novel strategy for solving bi-level linear programming problem based on goal programming in neutrosophic numbers environment. Bi-level linear programming problem comprises of two levels namely upper or first level and lower or second level with one objective at each level. The objective function of each level decision maker and the system constraints are considered as linear functions with neutrosophic numbers of the form [p + q I], where p, q are real numbers and I represents indeterminacy.
Papers on neutrosophic statistics, neutrosophic probability, plithogenic set, paradoxism, neutrosophic set, NeutroAlgebra, etc. and their applications.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
Selective maintenance problem plays an essential role in reliability optimization decision-making problems. Systems are a configuration of several components, and there are situations the system needs small intervals or break for maintenance actions, during the intervals expert carried out the maintenance actions to replace or repair the deteriorated components of the systems. Because of the uncertainty associated with the component’s operational time, failure, and next mission duration create a new challenge in determining optimal components allocation and evaluating future missions successfully. In this paper, a multi-objective selective maintenance allocation problem is formulated with fuzzy parameters under neutrosophic environment. A new defuzzification technique is introduced based on beta distribution to convert fuzzy parameters into crisp values. The neutrosophic goal programming technique is used to determine the compromise allocation of replaceable and repairable components based on the system reliability optimization. A numerical illustration is used to validate the model and ascertain its effectiveness. The result is compared with two other approaches and found to be better. The method is flexible and straightforward and can be solved using any available commercial packages. The extension of the concept can be useful to other complex system reliability optimization.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
International Journal of Neutrosophic Science (IJNS) is a peer-review journal publishing high quality experimental and theoretical research in all areas of Neutrosophic and its Applications. IJNS is published quarterly. IJNS is devoted to the publication of peer-reviewed original research papers lying in the domain of neutrosophic sets and systems. Papers submitted for possible publication may concern with foundations, neutrosophic logic and mathematical structures in the neutrosophic setting. Besides providing emphasis on topics like artificial intelligence, pattern recognition, image processing, robotics, decision making, data analysis, data mining, applications of neutrosophic mathematical theories contributing to economics, finance, management, industries, electronics, and communications are promoted.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.