Download Free Single Cell Protein Production From Lignocellulosic Biomass Book in PDF and EPUB Free Download. You can read online Single Cell Protein Production From Lignocellulosic Biomass and write the review.

This book focuses on bioconversion of lignocellulosic residues into single-cell protein, which offers an alternative to conventional proteins (such as soybean meal, egg protein or meat protein in animal feed) that is not affected by the climate. It provides an overview of the general uses of lignocellulosic residues and their bioconversion into single-cell protein using microorganisms, as well as the recovery of the valuable by-products. It also explores the benefits and potential drawbacks of single-cell protein, with an emphasis on the economic advantages of such processes. Given its multidisciplinary scope, the book represents a valuable resource for academics and industry practitioners interested in the production of single-cell protein from lignocellulosic residues.
A text to the advances and development of novel technologies in the production of high-value products from economically viable raw materials Lignocellulosic Biorefining Technologiesis an essential guide to the most recent advances and developments of novel technologies in the production of various high-value products from economically viable raw materials. Written by a team of experts on the topic, the book covers important topics specifically on production of economical and sustainable products such as various biofuels, organic acids, enzymes, biopigments, biosurfactants, etc. The book highlights the important aspects of lignocellulosic biorefining including structure, function, and chemical composition of the plant cell wall and reviews the details about the various components present in the lignocellulosic biomass and their characterizations. The authors explore the various approaches available for processing lignocellulosic biomass into second generation sugars and focus on the possibilities of utilization of lignocellulosic feedstocks for the production of biofuels and biochemicals. Each chapter includes a range of clear, informative tables and figures, and contains relevant references of published articles. This important text: Provides cutting-edge information on the recent developments in lignocellulose biorefinery Reviews production of various economically important and sustainable products, such as biofuels, organic acids, biopigments, and biosurfactants Highlights several broad-ranging areas of recent advances in the utilization of a variety of lignocellulosic feedstocks Provides a valuable, authoritative reference for anyone interested in the topic Written for post-graduate students and researchers in disciplines such as biotechnology, bioengineering, forestry, agriculture, and chemical industry, Lignocellulosic Biorefining Technologies is an authoritative and updated guide to the knowledge about various biorefining technologies.
Biochemical Engineering and Biotechnology, 2nd Edition, outlines the principles of biochemical processes and explains their use in the manufacturing of every day products. The author uses a diirect approach that should be very useful for students in following the concepts and practical applications. This book is unique in having many solved problems, case studies, examples and demonstrations of detailed experiments, with simple design equations and required calculations. - Covers major concepts of biochemical engineering and biotechnology, including applications in bioprocesses, fermentation technologies, enzymatic processes, and membrane separations, amongst others - Accessible to chemical engineering students who need to both learn, and apply, biological knowledge in engineering principals - Includes solved problems, examples, and demonstrations of detailed experiments with simple design equations and all required calculations - Offers many graphs that present actual experimental data, figures, and tables, along with explanations
This book provides important aspects of sustainable degradation of lignocellulosic biomass which has a pivotal role for the economic production of several value-added products and biofuels with safe environment. Different pretreatment techniques and enzymatic hydrolysis process along with the characterization of cell wall components have been discussed broadly. The following features of this book attribute its distinctiveness: This book comprehensively covers the improvement in methodologies for the biomass pretreatment, hemicellulose and cellulose breakdown into fermentable sugars, the analytical methods for biomass characterization, and bioconversion of cellulosics into biofuels. In addition, mechanistic analysis of biomass pretreatment and enzymatic hydrolysis have been discussed in details, highlighting key factors influencing these processes at industrial scale.
This book covers the applications of fungi used in biorefinery technology. As a great many different varieties of fungal species are available, the text focuses on the various applications of fungi for production of useful products including organic acids (lactic, citric, fumaric); hydrolytic enzymes (amylase, cellulases, xylanases, ligninases, lipases, pectinases, proteases); advanced biofuels (ethanol, single cell oils); polyols (xylitol); single cell protein (animal feed); secondary metabolites; and much more.
Chaetomium genus was established by Gustav Kunze in 1817. According to Index Fungorum Partnership, there are 273 Chaetomium species accepted till now. Members of the genus Chaetomium are capable of colonizing various substrates and are well-known for their ability to degrade cellulose and to produce a variety of bioactive metabolites. More than 200 compounds have been reported from this genus. A huge number of new and bioactive secondary metabolites associated with unique and diverse structural types, such as chaetoglobosins, epipolythiodioxopiperazines, azaphilones, depsidones, xanthones, anthraquinones, chromones, and steroids, have been isolated and identified. Many of the compounds have been reported to possess significant biological activities, such as antitumor, antimalarial, cytotoxic, enzyme inhibitory, antimicrobial, phytotoxic, antirheumatoid and other activities. Chaetomium taxa are frequently reported to be cellulase and ligninase producers with the ability to degrade cellulosic and woody materials. This is the first, comprehensive volume covering Chaetomium genus in detail. It includes the latest research, methods, and applications, and was written by scholars working directly in the field. The book also contains informative illustrations and is fully referenced for further reading.
Increase in green, renewable and sustainable energy demand due to higher environmental impacts (e.g. Greenhouse gases emissions, climate change, etc.) on consumption of fossil fuel resource put down an extra pressure on government, researchers and industrialists. Among several available biofuel options, biohydrogen is considered as one of the best environmentally clean fuel and a strong candidate to fulfil the future demand of sustainable energy resource. Although, biohydrogen production technology and its use as a fuel is still in infancy stage. Selection of most sustainable production pathway, increase in production upto industrial scale and cost efficiency are some issue still persist with the biohydrogen research. “Biohydrogen Production: Sustainability of Current Technology and Future Perspective” is giving an insight for the sustainable production of biohydrogen at industrial scale. The process of biohydrogen production is complex and to opt the best suited production system for industrial scale is a frantic task. This book will provide an in depth information on all available technologies for biohydrogen production and feedstock options to choose upon. This book is also providing information on present status of the research in the field and possibility to change future fuel economy in to biohydrogen economy. Experts views provided in the chapters by renowned researchers from all over the globe in the field of biohydrogen research made this book a cornucopia of present research and future perspective of biohydrogen. This book is targeted at the researchers working on biohydrogen as well as the bioenergy scientist planning to move towards biohydrogen research. This book will provide a platform for motivation of researchers and industrialists for innovative ideas and thoughts to bring biohydrogen production at industrial scale.
This book examines the connection between biomass structure, ultrastructure, and composition, to resistance to enzymatic deconstruction, with the aim of discovering new cost-effective technologies for biorefineries. It contains chapters on topics extending from the highest levels of biorefinery design and biomass life-cycle analysis, to detailed aspects of plant cell wall structure, chemical treatments, enzymatic hydrolysis, and product fermentation options."--Pub. desc.
In early 1973, I returned to Israel from a post-doctoral fellowship at Harvard University, and was accepted as a lecturer in the Department of Applied Microbiology at the Hebrew University of Jerusalem. Shortly after my return, Professor Richard Mateles, who at that time was head of the Department, suggested that I purchase a good and comprehensive book on single cell protein (SCP) in order to expand my general knowledge in the subject I had started then to work on; that was microbial utilization of one-carbon (C ) compounds. l Naturally, I took his advice (after all, he was the Boss) and bought the book, which was the only general book published on this subject at that time, and was based on papers presented at the First International Conference on Single Cell Protein, held at the Massachussetts Institute of Technology (M.I.T.), on October 1967 (Mateles and Tannenbaum, editors) [1]. Through this book I became acquainted with the world's hunger problem that existed in the past, and ways in which it was to be solved by SCP products prepared from CO , fossil-based raw 2 materials, and from wastes.