Download Free Simultaneous Source Seismic Acquisition Book in PDF and EPUB Free Download. You can read online Simultaneous Source Seismic Acquisition and write the review.

This book introduces simultaneous source technology and helps those who practice it succeed. Although the book does not include all developments, which would have en­tailed a much longer treatise, this work is written through the lens of decades of experiences and allows readers to understand the development of independent simultaneous sourcing. The relationships between data acquisition and data processing are discussed because never before have they been so intertwined as in this area. In addition to describing the underlying technologies, this book also is a user-guide which discusses survey design and acquisition and decribes the sensitivities of the processing algorithms which can allow simultaneous source technology to succeed. The audience for this book includes acquisition and pro­cessing geophysicists who will work with these data as well as those who require only an overview of the state of the art; and, even though they may not need the full technical details, they may want to know the limitations and advantages of using simultaneous sources.
Seismic surveys are subject to many different design criteria, but often the parameters are established based on an outdated view of how data can be acquired and how it will be processed. This book highlights what is possible using modern acquisition methods, techniques, and equipment, and how these may impact seismic survey design and acquisition.
The rapid development of seismic acquisition, including wide-azimuth surveys, increased channel count, and simultaneous shooting, is made possible by technological advancements today that will enable the production of clearer seismic images tomorrow. The core of this book is the relationship between acquisition parameters and seismic image quality.
This modern introduction to seismic data processing in both exploration and global geophysics demonstrates practical applications through real data and tutorial examples. The underlying physics and mathematics of the various seismic analysis methods are presented, giving students an appreciation of their limitations and potential for creating models of the sub-surface. Designed for a one-semester course, this textbook discusses key techniques within the context of the world's ever increasing need for petroleum and mineral resources - equipping upper undergraduate and graduate students with the tools they need for a career in industry. Examples presented throughout the text allow students to compare different methods and can be demonstrated using the instructor's software of choice. Exercises at the end of sections enable students to check their understanding and put the theory into practice and are complemented by solutions for instructors and additional case study examples online to complete the learning package.
Coding and Decoding Seismic Data: The Concept of Multishooting, Volume One, Second Edition, offers a thorough investigation of modern techniques for collecting, simulating, and processing multishooting data. Currently, the acquisition of seismic surveys is performed as a sequential operation in which shots are computed separately, one after the other. The cost of performing various shots simultaneously is almost identical to that of one shot; thus, the benefits of using the multishooting approach for computing seismic surveys are enormous. By using this approach, the longstanding problem of simulating a three-dimensional seismic survey can be reduced to a matter of weeks. Providing both theoretical and practical explanations of the multishooting approach, including case histories, this book is an essential resource for exploration geophysicists and practicing seismologists. - Investigates how to collect, stimulate, and process multishooting data - Addresses the improvements in seismic characterization and resolution that can be expected from multishooting data - Provides information for the oil and gas exploration and production business that will influence day-to-day surveying techniques - Covers robust decoding methods of undetermined mixtures, nonlinear decoding, the use of constraints in decoding processes, and nonlinear imaging of undecoded data - Includes access to a companion site with answers to questions posed in the book
Expanding the author's original work on processing to include inversion and interpretation, and including developments in all aspects of conventional processing, this two-volume set is a comprehensive and complete coverage of the modern trends in the seismic industry - from time to depth, from 3D to 4D, from 4D to 4C, and from isotropy to anisotropy.
Introduction to Petroleum Seismology, second edition (SEG Investigations in Geophysics Series No. 12) provides the theoretical and practical foundation for tackling present and future challenges of petroleum seismology especially those related to seismic survey designs, seismic data acquisition, seismic and EM modeling, seismic imaging, microseismicity, and reservoir characterization and monitoring. All of the chapters from the first edition have been improved and/or expanded. In addition, twelve new chapters have been added. These new chapters expand topics which were only alluded to in the first edition: sparsity representation, sparsity and nonlinear optimization, near-simultaneous multiple-shooting acquisition and processing, nonuniform wavefield sampling, automated modeling, elastic-electromagnetic mathematical equivalences, and microseismicity in the context of hydraulic fracturing. Another major modification in this edition is that each chapter contains analytical problems as well as computational problems. These problems include MatLab codes, which may help readers improve their understanding of and intuition about these materials. The comprehensiveness of this book makes it a suitable text for undergraduate and graduate courses that target geophysicists and engineers as well as a guide and reference work for researchers and professionals in academia and in the petroleum industry.
Details the properties of 3D acquisition geometries and shows how they naturally lead to the 3D symmetric sampling approach to 3D survey design. Many examples are used to illustrate choices of acquisition parameters, and the link between survey parameters and noise suppression as well as imaging is an intrinsic part of the contents.
Industrial Applications of High-Performance Computing: Best Global Practices offers a global overview of high-performance computing (HPC) for industrial applications, along with a discussion of software challenges, business models, access models (e.g., cloud computing), public-private partnerships, simulation and modeling, visualization, big data a
Elements of 3D Seismology, third edition is a thorough introduction to the acquisition, processing, and interpretation of 3D seismic data. This third edition is a major update of the second edition. Sections dealing with interpretation have been greatly revised in accordance with improved understanding and availability of data and software. Practice exercises have been added, as well as a 3D seismic survey predesign exercise. Discussions include: conceptual and historical foundations of modern reflection seismology; an overview of seismic wave phenomena in acoustic, elastic, and porous media; acquisition principles for land and marine seismic surveys; methods used to create 2D and 3D seismic images from field data; concepts of dip moveout, prestack migration, and depth migration; concepts and limitations of 3D seismic interpretation for structure, stratigraphy, and rock property estimation; and the interpretation role of attributes, impedance estimation, and AVO. This book is intended as a general text on reflection seismology, including wave propagation, data acquisition, processing, and interpretation and will be of interest to entry-level geophysicists, experts in related fields (geology, petroleum engineering), and experienced geophysicists in one subfield wishing to learn about another (e.g., interpreters wanting to learn about seismic waves or data acquisition).