Download Free Simulation Techniques Of Digital Twin In Real Time Applications Book in PDF and EPUB Free Download. You can read online Simulation Techniques Of Digital Twin In Real Time Applications and write the review.

SIMULATION TECHNIQUES OF DIGITAL TWIN IN REAL-TIME APPLICATIONS The book gives a complete overview of implementing digital twin technology in real-time scenarios while emphasizing how this technology can be embedded with running technologies to solve all other issues. Divided into two parts with Part 1 focusing on simulated techniques in digital twin technology and Part 2 on real-time applications of digital twin technology, the book collects a significant number of important research articles from domain-specific experts. The book sheds light on the various techniques of digital twin technology that are implemented in various application areas. It emphasizes error findings and respective solutions before the actual event happens. Most of the features in the book are on the implementation of strategies in real-time applications. Various real-life experiences are taken to show the proper implementation of simulation technologies. The book shows how engineers of any technology can input their research ideas to convert to real scenarios by using replicas. Hence, the book has a collection of research articles from various engineers with expertise in different technologies from many regions of the world. It shows how to implement the embedded real-time data into technologies. Specifically, the chapters relate to the auto landing and cruising features in aerial vehicles, automated coal mining simulation strategy, the enhancement of workshop equipment, and implementation in power energy management for urban railways. This book also describes the coherent mechanism of digital twin technologies with deep neural networks and artificial intelligence. Audience Researchers, engineers, and students in computer science, software engineering and industrial engineering, will find this book to be very useful.
Technology doesn't flow smoothly; it's the big surprises that matter, and Yale computer expert David Gelernter sees one such giant leap right on the horizon. Today's small scale software programs are about to be joined by vast public software works that will revolutionize computing and transform society as a whole. One such vast program is the "Mirror World." Imagine looking at your computer screen and seeing reality--an image of your city, for instance, complete with moving traffic patterns, or a picture that sketches the state of an entire far-flung corporation at this second. These representations are called Mirror Worlds, and according to Gelernter they will soon be available to everyone. Mirror Worlds are high-tech voodoo dolls: by interacting with the images, you interact with reality. Indeed, Mirror Worlds will revolutionize the use of computers, transforming them from (mere) handy tools to crystal balls which will allow us to see the world more vividly and see into it more deeply. Reality will be replaced gradually, piece-by-piece, by a software imitation; we will live inside the imitation; and the surprising thing is--this will be a great humanistic advance. We gain control over our world, plus a huge new measure of insight and vision. In this fascinating book--part speculation, part explanation--Gelernter takes us on a tour of the computer technology of the near future. Mirror Worlds, he contends, will allow us to explore the world in unprecedented depth and detail without ever changing out of our pajamas. A hospital administrator might wander through an entire medical complex via a desktop computer. Any citizen might explore the performance of the local schools, chat electronically with teachers and other Mirror World visitors, plant software agents to report back on interesting topics; decide to run for the local school board, hire a campaign manager, and conduct the better part of the campaign itself--all by interacting with the Mirror World. Gelernter doesn't just speculate about how this amazing new software will be used--he shows us how it will be made, explaining carefully and in detail how to build a Mirror World using technology already available. We learn about "disembodied machines," "trellises," "ensembles," and other computer components which sound obscure, but which Gelernter explains using familiar metaphors and terms. (He tells us that a Mirror World is a microcosm just like a Japanese garden or a Gothic cathedral, and that a computer program is translated by the computer in the same way a symphony is translated by a violinist into music.) Mirror Worlds offers a lucid and humanistic account of the coming software revolution, told by a computer scientist at the cutting edge of his field.
This book systematically introduces the development of simulation models as well as the implementation and evaluation of simulation experiments with Tecnomatix Plant Simulation. It deals with all users of Plant Simulation, who have more complex tasks to handle. It also looks for an easy entry into the program. Particular attention has been paid to introduce the simulation flow language SimTalk and its use in various areas of the simulation. The author demonstrates with over 200 examples how to combine the blocks for simulation models and how to deal with SimTalk for complex control and analysis tasks. The contents of this book ranges from a description of the basic functions of the material flow blocks to demanding topics such as the realization of a database-supported warehouse control by using the SQLite interface or the exchange of data by using XML, ActiveX, COM or DDE.
This book presents an internationally comprehensive perspective into the field of complex systems. It explores the challenges of and approaches to complexity from a broad range of disciplines, including big data, health care, medicine, mathematics, mechanical and systems engineering, air traffic control and finance. The book’s interdisciplinary character allows readers to identify transferable and mutually exclusive lessons learned among these disciplines and beyond. As such, it is well suited to the transfer of applications and methodologies between ostensibly incompatible disciplines. This book provides fresh perspectives on comparable issues of complexity from the top minds on systems thinking.
Digital Twin Driven Smart Manufacturing examines the background, latest research, and application models for digital twin technology, and shows how it can be central to a smart manufacturing process.The interest in digital twin in manufacturing is driven by a need for excellent product reliability, and an overall trend towards intelligent, and connected manufacturing systems. This book provides an ideal entry point to this subject for readers in industry and academia, as it answers the questions: (a) What is a digital twin? (b) How to construct a digital twin? (c) How to use a digital twin to improve manufacturing efficiency? (d) What are the essential activities in the implementation of a digital twin? (e) What are the most important obstacles to overcome for the successful deployment of a digital twin? (f) What are the relations between digital twin and New Technologies? (g) How to combine digital twin with the New Technologies to achieve high efficiency and smartness in manufacturing?This book focuses on these problems as it aims to help readers make the best use of digital twin technology towards smart manufacturing. - Analyzes the differences, synergies and possibilities for integration between digital twin technology and other technologies, such as big data, service and Internet of Things - Discuss new requirements for a traditional three-dimension digital twin and proposes a methodology for a five-dimension version - Investigates new models for optimized manufacturing, prognostics and health management, and cyber-physical fusion based on the digital twin
This book provides a holistic perspective on Digital Twin (DT) technologies, and presents cutting-edge research in the field. It assesses the opportunities that DT can offer for smart cities, and covers the requirements for ensuring secure, safe and sustainable smart cities. Further, the book demonstrates that DT and its benefits with regard to: data visualisation, real-time data analytics, and learning leading to improved confidence in decision making; reasoning, monitoring and warning to support accurate diagnostics and prognostics; acting using edge control and what-if analysis; and connection with back-end business applications hold significant potential for applications in smart cities, by employing a wide range of sensory and data-acquisition systems in various parts of the urban infrastructure. The contributing authors reveal how and why DT technologies that are used for monitoring, visualising, diagnosing and predicting in real-time are vital to cities’ sustainability and efficiency. The concepts outlined in the book represents a city together with all of its infrastructure elements, which communicate with each other in a complex manner. Moreover, securing Internet of Things (IoT) which is one of the key enablers of DT’s is discussed in details and from various perspectives. The book offers an outstanding reference guide for practitioners and researchers in manufacturing, operations research and communications, who are considering digitising some of their assets and related services. It is also a valuable asset for graduate students and academics who are looking to identify research gaps and develop their own proposals for further research.
Offering a comprehensive overview of the challenges, risks and options facing the future of mechatronics, this book provides insights into how these issues are currently assessed and managed. Building on the previously published book ‘Mechatronics in Action,’ it identifies and discusses the key issues likely to impact on future mechatronic systems. It supports mechatronics practitioners in identifying key areas in design, modeling and technology and places these in the wider context of concepts such as cyber-physical systems and the Internet of Things. For educators it considers the potential effects of developments in these areas on mechatronic course design, and ways of integrating these. Written by experts in the field, it explores topics including systems integration, design, modeling, privacy, ethics and future application domains. Highlighting novel innovation directions, it is intended for academics, engineers and students working in the field of mechatronics, particularly those developing new concepts, methods and ideas.
This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI). The Editors Prof. Dr.-Ing. Thorsten Schüppstuhl is head of the Institute of Aircraft Production Technology (IFPT) at the Hamburg University of Technology. Prof. Dr.-Ing. Kirsten Tracht is head of the Bremen Institute for Mechanical Engineering (bime) at the University of Bremen. Prof. Dr.-Ing. Annika Raatz is head of the Institute of Assembly Technology (match) at the Leibniz University Hannover.
This is the first of two volumes that together provide an overview of the latest advances in the generation and application of digital twins in bioprocess design and optimization. Both processes have undergone significant changes over the past few decades, moving from data-driven approaches into the 21st-century digitalization of the bioprocess industry. Moreover, the high demand for biotechnological products calls for efficient methods during research and development, as well as during tech transfer and routine manufacturing. In this regard, one promising tool is the use of digital twins, which offer a virtual representation of the bioprocess. They reflect the mechanistics of the biological system and the interactions between process parameters, key performance indicators and product quality attributes in the form of a mathematical process model. Furthermore, digital twins allow us to use computer-aided methods to gain an improved process understanding, to test and plan novel bioprocesses, and to efficiently monitor them. This book explains the mathematical structure of digital twins, their development and the model’s respective parts, as well as concepts for the knowledge-driven generation and structural variability of digital twins. Covering fundamentals as well as applications, the two volumes offer the ideal introduction to the topic for researchers in academy and industry alike.
SIMULATION TECHNIQUES OF DIGITAL TWIN IN REAL-TIME APPLICATIONS The book gives a complete overview of implementing digital twin technology in real-time scenarios while emphasizing how this technology can be embedded with running technologies to solve all other issues. Divided into two parts with Part 1 focusing on simulated techniques in digital twin technology and Part 2 on real-time applications of digital twin technology, the book collects a significant number of important research articles from domain-specific experts. The book sheds light on the various techniques of digital twin technology that are implemented in various application areas. It emphasizes error findings and respective solutions before the actual event happens. Most of the features in the book are on the implementation of strategies in real-time applications. Various real-life experiences are taken to show the proper implementation of simulation technologies. The book shows how engineers of any technology can input their research ideas to convert to real scenarios by using replicas. Hence, the book has a collection of research articles from various engineers with expertise in different technologies from many regions of the world. It shows how to implement the embedded real-time data into technologies. Specifically, the chapters relate to the auto landing and cruising features in aerial vehicles, automated coal mining simulation strategy, the enhancement of workshop equipment, and implementation in power energy management for urban railways. This book also describes the coherent mechanism of digital twin technologies with deep neural networks and artificial intelligence. Audience Researchers, engineers, and students in computer science, software engineering and industrial engineering, will find this book to be very useful.