Download Free Simplified Models For Assessing Heat And Mass Transfer Book in PDF and EPUB Free Download. You can read online Simplified Models For Assessing Heat And Mass Transfer and write the review.

The aim of this book is to supply valid and reasonable parameters in order to guide the choice of the right model of industrial evaporative tower according to operating conditions which vary depending on the particular industrial context: power plants, chemical plants, food processing plants and other industrial facilities are characterized by specific assets and requirements that have to be satisfied. Evaporative cooling is increasingly employed each time a significant water flow at a temperature which does not greatly differ from ambient temperature is needed for removing a remarkable heat load; its aim is to refrigerate a water flow through the partial evaporation of the same.
Each one of us has views about education, how discipline should function, how individuals learn, how they should be motivated, what intelligence is, and the structures (content and subjects) of the curriculum. Perhaps the most important beliefs that (beginning) teachers bring with them are their notions about what constitutes "good teaching". The scholarship of teaching requires that (beginning) teachers should examine (evaluate) these views in the light of knowledge currently available about the curriculum and instruction, and decide their future actions on the basis of that analysis. Such evaluations are best undertaken when classrooms are treated as laboratories of inquiry (research) where teachers establish what works best for them. Two instructor centred and two learner centred philosophies of knowledge, curriculum and instruction are used to discern the fundamental (basic) questions that engineering educators should answer in respect of their own beliefs and practice. They point to a series of classroom activities that will enable them to challenge their own beliefs, and at the same time affirm, develop, or change their philosophies of knowledge, curriculum and instruction.
This book review series presents current trends in modern biotechnology. The aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required from chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Volumes are organized topically and provide a comprehensive discussion of developments in the respective field over the past 3-5 years. The series also discusses new discoveries and applications. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. In general, special volumes are edited by well-known guest editors. The series editor and publisher will however always be pleased to receive suggestions and supplementary information. Manuscripts are accepted in English.
This book acts as a guide to simple models that describe some of the complex fluid dynamics, heat/mass transfer and combustion processes in droplets and sprays. Attention is focused mainly on the use of classical hydrodynamics, and a combination of kinetic and hydrodynamic models, to analyse the heating and evaporation of mono- and multi-component droplets. The models were developed for cases when small and large numbers of components are present in droplets. Some of these models are used for the prediction of time to puffing/micro-explosion of composite water/fuel droplets — processes that are widely used in combustion devices to stimulate disintegration of relatively large droplets into smaller ones. The predictions of numerical codes based on these models are validated against experimental results where possible. In most of the models, droplets are assumed to be spherical; some preliminary results of the generalisation of these models to the case of non-spherical droplets, approximating them as spheroids, are presented.
This volume contains selected papers from the Second Quadrennial International Conference on Structural Integrity (ICONS-2018). The papers cover important topics related to structural integrity of critical installations, such as power plants, aircrafts, spacecrafts, defense and civilian components. The focus is on assuring safety of operations with high levels of reliability and structural integrity. This volume will be of interest to plant operators working with safety critical equipment, engineering solution providers, software professionals working on engineering analysis, as well as academics working in the area.
Radiative Heat Transfer, Fourth Edition is a fully updated, revised and practical reference on the basic physics and computational tools scientists and researchers use to solve problems in the broad field of radiative heat transfer. This book is acknowledged as the core reference in the field, providing models, methodologies and calculations essential to solving research problems. It is applicable to a variety of industries, including nuclear, solar and combustion energy, aerospace, chemical and materials processing, as well as environmental, biomedical and nanotechnology fields. Contemporary examples and problems surrounding sustainable energy, materials and process engineering are an essential addition to this edition. - Includes end-of-chapter problems and a solutions manual, providing a structured and coherent reference - Presents many worked examples which have been brought fully up-to-date to reflect the latest research - Details many computer codes, ranging from basic problem solving aids to sophisticated research tools
There is only a very limited number of physical systems that can be exactly described in terms of simple analytic functions. There are, however, a vast range of problems which are amenable to a computational approach. This book provides a concise, self-contained introduction to the basic numerical and analytic techniques, which form the foundations of the algorithms commonly employed to give a quantitative description of systems of genuine physical interest. The methods developed are applied to representative problems from classical and quantum physics.
This book focuses on a forensics-style re-examination of several historical events. The purpose of these studies is to afford readers the opportunity to apply basic principles of physics to unsolved mysteries and controversial events in order to settle the historical debate. We identify nine advantages of using case studies as a pedagogical approach to understanding forensic physics. Each of these nine advantages is the focus of a chapter of this book. Within each chapter, we show how a cascade of unlikely events resulted in an unpredictable catastrophe and use introductory-level physics to analyze the outcome. Armed with the tools of a good forensic physicist, the reader will realize that the historical record is far from being a set of agreed upon immutable facts; instead, it is a living, changing thing that is open to re-visitation, re-examination, and re-interpretation.
A comprehensive source of in-depth information provided on existing and emerging food technologies based on the electromagnetic spectrum Electromagnetic Technologies in Food Science examines various methods employed in food applications that are based on the entire electromagnetic (EM) spectrum. Focusing on recent advances and challenges in food science and technology, this is an up-to-date volume that features vital contributions coming from an international panel of experts who have shared both fundamental and advanced knowledge of information on the dosimetry methods, and on potential applications of gamma irradiation, electron beams, X-rays, radio and microwaves, ultraviolet, visible, pulsed light, and more. Organized into four parts, the text begins with an accessible overview of the physics of the electromagnetic spectrum, followed by discussion on the application of the EM spectrum to non-thermal food processing. The physics of infrared radiation, microwaves, and other advanced heating methods are then deliberated in detail—supported by case studies and examples that illustrate a range of both current and potential applications of EM-based methods. The concluding section of the book describes analytical techniques adopted for quality control, such as hyperspectral imaging, infrared and Raman spectroscopy. This authoritative book resource: Covers advanced theoretical knowledge and practical applications on the use of EM spectrum as novel methods in food processing technology Discusses the latest progress in developing quality control methods, thus enabling the control of continuous fast-speed processes Explores future challenges and benefits of employing electromagnetic spectrum in food technology applications Addresses emerging processing technologies related to improving safety, preservation, and overall quality of various food commodities Electromagnetic Technologies in Food Science is an essential reading material for undergraduate and graduate students, researchers, academics, and agri-food professionals working in the area of food preservation, novel food processing techniques and sustainable food production.
This book is aimed to help instructional designers, science game designers, science faculty, lab designers, and content developers in designing interactive learning experiences using emerging technologies and cyberlearning. The proposed solutions are for undergraduate and graduate scientific communication, engineering courses, scientific research communication, and workforce training. Reviewing across the science education literature reveals various aspects of unresolved challenges or inabilities in the visualization of scientific concepts. Visuospatial thinking is the fundamental part of learning sciences; however, promoting spatial thinking has not been emphasized enough in the educational system (Hegarty, 2014). Cognitive scientists distinguish between the multiple aspects of spatial ability and stresse that various problems or disciplines require different types of spatial skills. For example, the spatial ability to visualize anatomy cross-sections is significantly associated with mental rotation skills. The same is true for physical problems that often deal with spatial representations. However, most of the physics problems are marked by dynamicity, and visualizing dynamicity is inferred by the integrations of different participating components in the system. Therefore, what is needed for learning dynamicity is visualizing the mental animation of static episodes. This book is a leap into designing framework for using mixed reality (XR) technologies and cyberlearning in communicating advanced scientific concepts. The intention is to flesh out the cognitive infrastructure and visuospatial demands of complex systems and compare them in various contexts and disciplines. The practical implementation of emerging technology can be achieved by foreseeing each XR technology’s affordances and mapping those out to the cognitive infrastructure and visuospatial demands of the content under development.