Download Free Similarity Problems And Completely Bounded Maps Book in PDF and EPUB Free Download. You can read online Similarity Problems And Completely Bounded Maps and write the review.

These notes revolve around three similarity problems, appearing in three dif ferent contexts, but all dealing with the space B(H) of all bounded operators on a complex Hilbert space H. The first one deals with group representations, the second one with C* -algebras and the third one with the disc algebra. We describe them in detail in the introduction which follows. This volume is devoted to the background necessary to understand these three open problems, to the solutions that are known in some special cases and to numerous related concepts, results, counterexamples or extensions which their investigation has generated. For instance, we are naturally lead to study various Banach spaces formed by the matrix coefficients of group representations. Furthermore, we discuss the closely connected Schur multipliers and Grothendieck's striking characterization of those which act boundedly on B(H). While the three problems seem different, it is possible to place them in a common framework using the key concept of "complete boundedness", which we present in detail. In some sense, completely bounded maps can also be viewed as spaces of "coefficients" of C*-algebraic representations, if we allow "B(H) valued coefficients", this is the content of the fundamental factorization property of these maps, which plays a central role in this volume. Using this notion, the three problems can all be formulated as asking whether "boundedness" implies "complete boundedness" for linear maps satisfying cer tain additional algebraic identities.
In this book, first published in 2003, the reader is provided with a tour of the principal results and ideas in the theories of completely positive maps, completely bounded maps, dilation theory, operator spaces and operator algebras, together with some of their main applications. The author assumes only that the reader has a basic background in functional analysis, and the presentation is self-contained and paced appropriately for graduate students new to the subject. Experts will also want this book for their library since the author illustrates the power of methods he has developed with new and simpler proofs of some of the major results in the area, many of which have not appeared earlier in the literature. An indispensable introduction to the theory of operator spaces for all who want to know more.
This second volume of Featured Reviews makes available special detailed reviews of some of the most important mathematical articles and books published from 1997 through 1999. Also included are excellent reviews of several classic books and articles published prior to 1970. Among those reviews, for example, are the following: Homological Algebra by Henri Cartan and Samuel Eilenberg, reviewed by G. Hochschild; Faisceaux algebriques coherents by Jean-Pierre Serre, reviewed by C. Chevalley; and On the Theory of General Partial Differential Operators by Lars Hormander, reviewed by J. L. Lions. In particular, those seeking information on current developments outside their own area of expertise will find the volume very useful. By identifying some of the best publications, papers, and books that have had or are expected to have a significant impact in applied and pure mathematics, this volume will serve as a comprehensive guide to important new research across all fields covered by MR.
This book offers a panorama of recent advances in the theory of infinite groups. It contains survey papers contributed by leading specialists in group theory and other areas of mathematics. Topics include amenable groups, Kaehler groups, automorphism groups of rooted trees, rigidity, C*-algebras, random walks on groups, pro-p groups, Burnside groups, parafree groups, and Fuchsian groups. The accent is put on strong connections between group theory and other areas of mathematics.
During the last few years, the theory of operator algebras, particularly non-self-adjoint operator algebras, has evolved dramatically, experiencing both international growth and interfacing with other important areas. The present volume presents a survey of some of the latest developments in the field in a form that is detailed enough to be accessible to advanced graduate students as well as researchers in the field. Among the topics treated are: operator spaces, Hilbert modules, limit algebras, reflexive algebras and subspaces, relations to basis theory, C* algebraic quantum groups, endomorphisms of operator algebras, conditional expectations and projection maps, and applications, particularly to wavelet theory. The volume also features an historical paper offering a new approach to the Pythagoreans' discovery of irrational numbers.
These Proceedings comprise the bulk of the papers presented at the Inter national Conference on Semigroups of Opemtors: Theory and Contro~ held 14-18 December 1998, Newport Beach, California, U.S.A. The intent of the Conference was to highlight recent advances in the the ory of Semigroups of Operators which provides the abstract framework for the time-domain solutions of time-invariant boundary-value/initial-value problems of partial differential equations. There is of course a firewall between the ab stract theory and the applications and one of the Conference aims was to bring together both in the hope that it may be of value to both communities. In these days when all scientific activity is judged by its value on "dot com" it is not surprising that mathematical analysis that holds no promise of an immediate commercial product-line, or even a software tool-box, is not high in research priority. We are particularly pleased therefore that the National Science Foundation provided generous financial support without which this Conference would have been impossible to organize. Our special thanks to Dr. Kishan Baheti, Program Manager.
Handbook of the Geometry of Banach Spaces
The authors develop elements of a general dilation theory for operator-valued measures. Hilbert space operator-valued measures are closely related to bounded linear maps on abelian von Neumann algebras, and some of their results include new dilation results for bounded linear maps that are not necessarily completely bounded, and from domain algebras that are not necessarily abelian. In the non-cb case the dilation space often needs to be a Banach space. They give applications to both the discrete and the continuous frame theory. There are natural associations between the theory of frames (including continuous frames and framings), the theory of operator-valued measures on sigma-algebras of sets, and the theory of continuous linear maps between -algebras. In this connection frame theory itself is identified with the special case in which the domain algebra for the maps is an abelian von Neumann algebra and the map is normal (i.e. ultraweakly, or weakly, or w*) continuous.
This invaluable reference is the first to present the general theory of algebras of operators on a Hilbert space, and the modules over such algebras. The new theory of operator spaces is presented early on and the text assembles the basic concepts, theory and methodologies needed to equip a beginning researcher in this area. A major trend in modern mathematics, inspired largely by physics, is toward `noncommutative' or `quantized' phenomena. In functional analysis, this has appeared notably under the name of `operator spaces', which is a variant of Banach spaces which is particularly appropriate for solving problems concerning spaces or algebras of operators on Hilbert space arising in 'noncommutative mathematics'. The category of operator spaces includes operator algebras, selfadjoint (that is, C*-algebras) or otherwise. Also, most of the important modules over operator algebras are operator spaces. A common treatment of the subjects of C*-algebras, nonselfadjoint operator algebras, and modules over such algebras (such as Hilbert C*-modules), together under the umbrella of operator space theory, is the main topic of the book. A general theory of operator algebras, and their modules, naturally develops out of the operator space methodology. Indeed, operator space theory is a sensitive enough medium to reflect accurately many important noncommutative phenomena. Using recent advances in the field, the book shows how the underlying operator space structure captures, very precisely, the profound relations between the algebraic and the functional analytic structures involved. The rich interplay between spectral theory, operator theory, C*-algebra and von Neumann algebra techniques, and the influx of important ideas from related disciplines, such as pure algebra, Banach space theory, Banach algebras, and abstract function theory is highlighted. Each chapter ends with a lengthy section of notes containing a wealth of additional information.
A collection of 25 papers dedicated to Israel Gohberg, an outstanding leader in operator theory. Also containing a review of his contributions to mathematics and a complete list of his publications. The book is of interest to a wide audience of pure and applied mathematicians.