Download Free Silicon Nanowire Transistors Book in PDF and EPUB Free Download. You can read online Silicon Nanowire Transistors and write the review.

This book describes the n and p-channel Silicon Nanowire Transistor (SNT) designs with single and dual-work functions, emphasizing low static and dynamic power consumption. The authors describe a process flow for fabrication and generate SPICE models for building various digital and analog circuits. These include an SRAM, a baseband spread spectrum transmitter, a neuron cell and a Field Programmable Gate Array (FPGA) platform in the digital domain, as well as high bandwidth single-stage and operational amplifiers, RF communication circuits in the analog domain, in order to show this technology’s true potential for the next generation VLSI.
“Nanowire Field Effect Transistor: Basic Principles and Applications” places an emphasis on the application aspects of nanowire field effect transistors (NWFET). Device physics and electronics are discussed in a compact manner, together with the p-n junction diode and MOSFET, the former as an essential element in NWFET and the latter as a general background of the FET. During this discussion, the photo-diode, solar cell, LED, LD, DRAM, flash EEPROM and sensors are highlighted to pave the way for similar applications of NWFET. Modeling is discussed in close analogy and comparison with MOSFETs. Contributors focus on processing, electrostatic discharge (ESD) and application of NWFET. This includes coverage of solar and memory cells, biological and chemical sensors, displays and atomic scale light emitting diodes. Appropriate for scientists and engineers interested in acquiring a working knowledge of NWFET as well as graduate students specializing in this subject.
A self-contained and up-to-date account of the current developments in the physics and technology of nanowire semiconductor devices.
In the last few years, the leading semiconductor industries have introduced multi-gate non-planar transistors into their core business. These are being applied in memories and in logical integrated circuits to achieve better integration on the chip, increased performance, and reduced energy consumption. Intense research is underway to develop these devices further and to address their limitations, in order to continue transistor scaling while further improving performance. This Special Issue looks at recent developments in the field of nanowire field-effect transistors (NW-FETs), covering different aspects of the technology, physics, and modelling of these nanoscale devices.
In its second, extensively revised second edition, Semiconducting Silicon Nanowires for Biomedical Applications reviews the fabrication, properties, and biomedical applications of this key material. The book begins by reviewing the basics of growth, characterization, biocompatibility, and surface modification of semiconducting silicon nanowires. Attention then turns to use of these structures for tissue engineering and delivery applications, followed by detection and sensing. Reflecting the evolution of this multidisciplinary subject, several new key topics are highlighted, including our understanding of the cell-nanowire interface, latest advances in associated morphologies (including silicon nanoneedles and nanotubes for therapeutic delivery), and significantly, the status of silicon nanowire commercialization in biotechnology. Semiconducting Silicon Nanowires for Biomedical Applications is a comprehensive resource for biomaterials scientists who are focused on biosensors, drug delivery, and the next generation of nano-biotech platforms that require a detailed understanding of the cell-nanowire interface, along with researchers and developers in industry and academia who are concerned with nanoscale biomaterials, in particular electronically-responsive structures. Reviews the growth, characterization, biocompatibility, and surface modification of semiconducting silicon nanowires Describes silicon nanowires for tissue engineering and delivery applications, including cellular binding & internalization, tissue engineering scaffolds, mediated differentiation of stem cells, and silicon nanoneedles & nanotubes for delivery of small molecule / biologic-based therapeutics Highlights the use of silicon nanowires for detection and sensing Presents a detailed description of our current understanding of the cell-nanowire interface Covers the current status of commercial development of silicon nanowire-based platforms
This book contains stories of women engineers’ paths through the golden age of microelectronics, stemming from the invention of the transistor in 1947. These stories, like the biographies of Marie Curie and the National Geographic’s stories of Jane Goodall’s research that inspired the authors will inspire and guide readers along unconventional pathways to contributions to microelectronics that we can only begin to imagine. The book explores why and how the women writing here chose their career paths and how they navigated their careers. This topic is of interest to a vast audience, from students to professionals to university advisers to industry CEOs, who can imagine the advantages of a future with a diverse work force. Provides insight into women’s early contributions to the field of microelectronics and celebrates the challenges they overcame; Presents compelling innovations from academia, research, and industry into advances, applications, and the future of microelectronics; Includes a fascinating look into topics such as nanotechnologies, video games, analog electronics, design automation, and neuromorphic circuits.