Download Free Shortest Path With Normalized Single Valued Trapezoidal Neutrosophic Numbers Book in PDF and EPUB Free Download. You can read online Shortest Path With Normalized Single Valued Trapezoidal Neutrosophic Numbers and write the review.

In this paper we studied the network with Single Valued Trapezoidal Neutrosophic (SVTN) numbers. We propose an algorithm by transforming single valued trapezoidal neutrosophic (SVTN) numbersinto normalized single valued trapezoidal neutrosophic (NSVTN) numbers and obtain an optimal value of the short path problem using defuzzification and scoring function. Finally, a numerical example is used to illustrate the efficiency of the proposed approach.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Some articles in this issue: Neutrosophic Soft Fixed Points, Selection of Alternative under the Framework of Single-Valued Neutrosophic Sets, Application of Single Valued Trapezoidal Neutrosophic Numbers in Transportation Problem.
Contributors to current issue (listed in papers’ order): Ibrahim Yasser, Abeer Twakol, A. A. Abd El-Khalek, A. A. Salama, Ahmed Sharaf Al-Din, Issam Abu Al-Qasim, Rafif Alhabib, Magdy Badran, Remya P. B, Francina Shalini, Masoud Ghods, Zahra Rostami, A. Sahaya Sudha, Luiz Flavio Autran Monteiro Gomes, K.R. Vijayalakshmi, Prakasam Muralikrishna, Surya Manokaran, Nidhi Singh, Avishek Chakraborty, Soma Bose Biswas, Malini Majumdar, Rakhal Das, Binod Chandra Tripathy, Nidhi Singh, Avishek Chakraborty, Nilabhra Paul, Deepshikha Sarma, Akash Singh, Uttam Kumar Bera, Fatimah M. Mohammed, Sarah W. Raheem, Muhammad Riaz, Florentin Smarandache, Faruk Karaaslan, Masooma Raza Hashmi, Iqra Nawaz, Kousik Das, Sovan Samanta, Kajal De, Xavier Encarnacion, Nivetha Martin, I. Pradeepa, N. Ramila Gandhi, P. Pandiammal, Aiman Muzaffar, Md Tabrez Nafis, Shahab Saquib Sohail, Abhijit Saha, Jhulaneswar Baidya, Debjit Dutta, Irfan Deli, Said Broumi, Mohsin Khalid, Neha Andaleeb Khalid, Md. Hanif Page, Qays Hatem Imran, Shilpi Pal, S. Satham Hussain, Saeid Jafari, N. Durga, Hanieh Shambayati, Mohsen Shafiei Nikabadi, Seyed Mohammad, Ali Khatami Firouzabadi, Mohammad Rahmanimanesh, Mujahid Abbas, Ghulam Murtaza, K. Porselvi, B. Elavarasan, Y. B. Jun, Chinnadurai V, Sindhu M P, K.Radhika, K. Arun Prakash, Malayalan Lathamaheswari, Ruipu Tan, Deivanayagampillai Nagarajan, Talea Mohamed, Assia Bakali, Nivetha Martin, R. Dhavaseelan, Ali Hussein Mahmood Al-Obaidi, Suman Das, Surapati Pramanik, Madad Khan, Muhammad Zeeshan, Saima Anis, Abdul Sami Awan, M. Sarwar Sindhu, Tabasam Rashid, Agha Kashif, Rajesh Kumar Saini, Atul Sangal, Manisha.
Neutrosophic set theory provides a new tool to handle the uncertainties in shortest path problem (SPP). This paper introduces the SPP from a source node to a destination node on a neutrosophic graph in which a positive neutrosophic number is assigned to each edge as its edge cost. We define this problem as neutrosophic shortest path problem (NSSPP). A simple algorithm is also introduced to solve the NSSPP. The proposed algorithm finds the neutrosophic shortest path (NSSP) and its corresponding neutrosophic shortest path length (NSSPL) between source node and destination node.
In this paper, we first introduce single valued trapezoidal neutrosophic (SVTN) numbers with their properties. We then define some operations and distances of the SVTN-numbers. Based on these new operations, we also define some aggregation operators, including SVTN-ordered weighted geometric operator, SVTN-hybrid geometric operator, SVTN-ordered weighted arithmetic operator and SVTN-hybrid arithmetic operator. We then examine the properties of these SVTN-information aggregation operators. By using the SVTN-weighted geometric operator and SVTN-hybrid geometric operator, we also define a multi attribute group decision making method, called SVTN-group decision making method. We finally give an illustrative example and comparative analysis to verify the developed method and to demonstrate its practicality and effectiveness.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
This book offers a comprehensive reference guide for modeling humanoid robots using intelligent and fuzzy systems. It provides readers with the necessary intelligent and fuzzy tools for controlling humanoid robots by incomplete, vague, and imprecise information or insufficient data, where classical modeling approaches cannot be applied. The respective chapters, written by prominent researchers, explain a wealth of both basic and advanced concepts including fuzzy control, metaheuristic-based control, neutrosophic control, etc. To foster reader comprehension, all chapters include relevant numerical examples or case studies. Taken together, they form an excellent reference guide for researchers, lecturers, and postgraduate students pursuing research on humanoid robots. Moreover, by extending all the main aspects of humanoid robots to its intelligent and fuzzy counterparts, the book presents a dynamic snapshot of the field that is expected to stimulate new directions, ideas, and developments.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
Multi-attribute decision-making problems under the trapezoidal fuzzy neutrosophic numbers environment are complex, particularly when the attribute value data are incomplete, and the attribute weight is completely unknown. As a solution, this study proposes a decision-making method based on information entropy and grey theory.