Download Free Shielding For High Energy Electron Accelerator Installations Book in PDF and EPUB Free Download. You can read online Shielding For High Energy Electron Accelerator Installations and write the review.

Electron linear accelerators are being used throughout the world in increasing numbers in a variety of important applications. Foremost among these is their role in the treatment of cancer. Commercial uses include non-destructive testing by radiography, food preservation, product sterilization and radiation processing of materials such as plastics and adhesives. Scientific applications include investigations in radiation biology, radiation chemistry, nuclear and elementary particle physics and radiation research. This manual provides authoritative guidance in radiation protection for this important category of radiation sources.
A textbook for a senior or graduate course in medical or health physics. Students are assumed to be familiar with the radiation- producing devices used in radiation oncology. The second volume corrects some errors detected in the 1998 first, and adds discussions of intensity modulated radiation therapy, CT room design, the design of direct shielded doors, and other topics. Annotation copyrighted by Book News Inc., Portland, OR.
Accelerator Health Physics tackles the importance of health physics in the field of nuclear physics, especially to those involved with the use of particle accelerators. The book first explores concepts in nuclear physics, such as fundamental particles, radiation fields, and the responses of the human body to radiation exposure. The book then shifts to its intended purpose and discusses the uses of particle accelerators and the radiation they emit; the measurement of the radiation fields - radiation detectors, the history, design, and application of accelerator shielding; and measures in the implementation of a health physics program. The text is recommended for health physicists who want to learn more about particle accelerators, their effects, and how these effects can be prevented. The book is also beneficial to physicists whose work involves particle accelerators, as the book aims to educate them about the hazards they face in the workplace.
Expand your understanding of the physics and practical clinical applications of advanced radiation therapy technologies with Khan's The Physics of Radiation Therapy, 5th edition, the book that set the standard in the field. This classic full-color text helps the entire radiation therapy team—radiation oncologists, medical physicists, dosimetrists, and radiation therapists—develop a thorough understanding of 3D conformal radiotherapy (3D-CRT), stereotactic radiosurgery (SRS), high dose-rate remote afterloaders (HDR), intensity modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT), Volumetric Modulated Arc Therapy (VMAT), and proton beam therapy, as well as the physical concepts underlying treatment planning, treatment delivery, and dosimetry. In preparing this new Fifth Edition, Dr. Kahn and new co-author Dr. John Gibbons made chapter-by-chapter revisions in the light of the latest developments in the field, adding new discussions, a new chapter, and new color illustrations throughout. Now even more precise and relevant, this edition is ideal as a reference book for practitioners, a textbook for students, and a constant companion for those preparing for their board exams. Features Stay on top of the latest advances in the field with new sections and/or discussions of Image Guided Radiation Therapy (IGRT), Volumetric Modulated Arc Therapy (VMAT), and the Failure Mode Event Analysis (FMEA) approach to quality assurance. Deepen your knowledge of Stereotactic Body Radiotherapy (SBRT) through a completely new chapter that covers SBRT in greater detail. Expand your visual understanding with new full color illustrations that reflect current practice and depict new procedures. Access the authoritative information you need fast through the new companion website which features fully searchable text and an image bank for greater convenience in studying and teaching. This is the tablet version which does not include access to the supplemental content mentioned in the text.
A vital reference for the entire radiation oncology team, Khan’s The Physics of Radiation Therapy thoroughly covers the physics and practical clinical applications of advanced radiation therapy technologies. Dr. John Gibbons carries on the tradition established by Dr. Khan in previous editions, ensuring that the 6th Edition provides state-of-the-art information for radiation oncologists, medical physicists, dosimetrists, radiation therapists, and residents alike. This updated classic remains the most practical radiation therapy physics text available, offering an ideal balance between theory and clinical application.
Thoroughly updated throughout, this second edition of Monte Carlo Techniques in Radiation Therapy: Applications to Dosimetry, Imaging, and Preclinical Radiotherapy, edited by Joao Seco and Frank Verhaegen, explores the use of Monte Carlo methods for modelling various features of internal and external radiation sources. Monte Carlo methods have been heavily used in the field of radiation therapy in applications such as dosimetry, imaging, radiation chemistry, modelling of small animal irradiation units, etc. The aim of this book is to provide a compendium of the Monte Carlo methods that are commonly used in radiation therapy applications, which will allow students, postdoctoral fellows, and university professors to learn and teach Monte Carlo techniques. This book provides concise but detailed information about many Monte Carlo applications that cannot be found in any other didactic or scientific book. This second edition contains many new chapters on topics such as: Monte Carlo studies of prompt gamma emission Developments in proton imaging Monte Carlo for cone beam CT imaging Monte Carlo modelling of proton beams for small animal irradiation Monte Carlo studies of microbeam radiation therapy Monte Carlo in micro- and nano-dosimetry GPU-based fast Monte Carlo simulations for radiotherapy This book is primarily aimed at students and scientists wishing to learn and improve their knowledge of Monte Carlo methods in radiation therapy.