Download Free Sharp Focusing Of Laser Light Book in PDF and EPUB Free Download. You can read online Sharp Focusing Of Laser Light and write the review.

Readers will learn in which ways light can be "confined" within a subwavelength region smaller than half a wavelength. Strictly within the focal spot, all degrees of freedom of light interact and manifest themselves in a dramatic way. The size and shape of the focal spot and the magnitude of side-lobes depend on the polarization state alongside phase and amplitude distributions of a light beam. Readers will learn techniques in which inhomogeneously (i.e., azimuthally and radially) polarized optical beams can be focused. In sharp focus, exotic phenomena can occur, including the negative propagation of light and a toroidal optical flow. Throughout the book, the numerical simulation is performed using the rigorous solution of Maxwell’s equations based on a Finite-Difference Time-Domain (FDTD) approach, which makes the results of modeling highly reliable. The photonic components, including optical metasurfaces, discussed in the book have been implemented using state-of-the-art techniques of electron beam writing and reactive ion-beam etching of microrelief. Two chapters are concerned with photonics hot spots, which deal with the control of light by means of optical metasurfaces and the generation of an energy backflow in the region of sharp focus of a laser beam. Another hot topic is diffractive polarization converters implemented as subwavelength diffraction gratings to convert polarization of light. By way of illustration, such converters are shown to perform linear-to-radial or linear-to-azimuthal polarization conversion. The book describes advanced photonic components fabricated by the authors to perform sharp focusing of light, including binary zone plates, binary axicons, a planar photonic crystal lens, diffraction polarization converters, and metalenses. This book is a must-have for individuals and institutions studying cutting edge optics.
Readers will learn in which ways light can be "confined" within a subwavelength region smaller than half a wavelength. Strictly within the focal spot, all degrees of freedom of light interact and manifest themselves in a dramatic way. The size and shape of the focal spot and the magnitude of side-lobes depend on the polarization state alongside phase and amplitude distributions of a light beam. Readers will learn techniques in which inhomogeneously (i.e., azimuthally and radially) polarized optical beams can be focused. In sharp focus, exotic phenomena can occur, including the negative propagation of light and a toroidal optical flow. Throughout the book, the numerical simulation is performed using the rigorous solution of Maxwell’s equations based on a Finite-Difference Time-Domain (FDTD) approach, which makes the results of modeling highly reliable. The photonic components, including optical metasurfaces, discussed in the book have been implemented using state-of-the-art techniques of electron beam writing and reactive ion-beam etching of microrelief. Two chapters are concerned with photonics hot spots, which deal with the control of light by means of optical metasurfaces and the generation of an energy backflow in the region of sharp focus of a laser beam. Another hot topic is diffractive polarization converters implemented as subwavelength diffraction gratings to convert polarization of light. By way of illustration, such converters are shown to perform linear-to-radial or linear-to-azimuthal polarization conversion. The book describes advanced photonic components fabricated by the authors to perform sharp focusing of light, including binary zone plates, binary axicons, a planar photonic crystal lens, diffraction polarization converters, and metalenses. This book is a must-have for individuals and institutions studying cutting edge optics.
In Focus Like a Laser Beam, acclaimed management consultant and business blogger Lisa Haneberg offers business leaders a new way to direct their focus that, like a laser beam, is direct, fast, and on track. The book offers leaders ways to improve energy and engagement in the workplace and redirect how people communicate at work. Focus Like a Laser Beam is filled with useful suggestions for dealing with distractions and diversions and outlines the ten practices that will help leaders focus on what’s most important. Know and feel the power of laser focus Get connected with your employees Have fun and be fun Relax to energize Turn meetings into focus sessions Invite a challenge Huddle Stop multitasking and put your focus where it belongs Do one great thing Let go of outdated goals, projects, and tasks
Diffractive Nanophotonics demonstrates the utility of the well-established methods of diffractive computer optics in solving nanophotonics tasks. It is concerned with peculiar properties of laser light diffraction by microoptics elements with nanoscale features and light confinement in subwavelength space regions. Written by recognized experts in t
Diffractive Optics and Nanophotonics is devoted to achievements in diffractive optics, focusing on the creation of new nanophotonic components and devices, as well as instrumentation and available information technology. The author describes methods of calculation of diffractive optical elements to solve actual problems of nanophotonics. Coverage includes mathematical methods for calculation of diffraction gratings, calculation of modes of inhomogeneous waveguides, integral methods of calculation of electromagnetic field near the focus, and methods of calculation of diffractive optical elements generating vortex laser beams.
Blindness or serious vision impairment is one of the most feared disabilities known to humankind. A 2016 report compiled by the National Eye Institute (NEI) of the National Institutes of Health (NIH) and Prevent Blindness America states that although half of all blindness can be prevented, the number of people who suffer vision loss continues to increase. The technique of dynamic light scattering (DLS) was developed by physicists in the late 1960s to early 1970s. DLS is now emerging as a potential ophthalmic tool, making possible studies of virtually every tissue and fluid comprising the eye, thus pushing the envelope for broader applications in ophthalmology. This book presents a comprehensive review of the application of light scattering in clinical use. It is the first of its kind, offering insight to how DLS can be applied to the human eye as well as animals. Chapters discuss DLS in neurological diseases, including protocols, informed consent, and patents. Dynamic Light Scattering Spectroscopy of the Human Eye is a must-have resource for physicians, engineers, and physicists interested in the clinical application of DLS to diagnose and potentially treat medical conditions in a non-invasive, quantitative and novel way.
This book is devoted to the consideration of unusual laser beams – vortex or singular beams. It contains many numerical examples, which clearly show how the phase of optical vortices changes during propagation in free space, and that the topological charge is preserved. Topological Charge of Optical Vortices shows that the topological charge of an optical vortex is equal to the number of screw dislocations or the number of phase singularities in the beam cross-section. A single approach is used for the entire book: based on M. Berry’s formula. It is shown that phase singularities during beam propagation can be displaced to infinity at a speed greater than the speed of light. The uniqueness of the book is that the calculation of the topological charge for scalar light fields is extended to vector fields and is used to calculate the Poincare–Hopf singularity index for vector fields with inhomogeneous linear polarization with V-points and for the singularity index of vector fields with inhomogeneous elliptical polarization with C-points and C- lines. The book is written for opticians, and graduate students interested in an interesting section of optics – singular optics. It will also be of interest to scientists and researchers who are interested in modern optics. In order to understand the content of the book, it is enough to know paraxial optics (Fourier optics) and be able to calculate integrals.
Covering both underlying theory and practical applications, Laser Safety provides a unique and readily-understandable review of current laser safety. This resource explains in detail the biological effects of laser radiation, particularly on the eye, and the provisions and requirements of the international laser safety standard IEC 60825-1, includi
This book aims to popularize physics by emphasizing conceptual ideas of physics and their interconnections, while avoiding mathematics entirely. The approach is to explore intriguing topics by asking and discussing questions, thereby the reader can participate in developing answers, which enables a deeper understanding than is achievable with memorization.The topic of this volume, 'Colors, light and Optical Illusions', is chosen because we face colors and light every waking minute of our lives, and we experience optical illusions much more often than we realize.This book will attract all those with a curious mind about nature and with a desire to understand how nature works, especially the younger generation of secondary-school children and their teachers.