Download Free Sets Lattices And Boolean Algebras Book in PDF and EPUB Free Download. You can read online Sets Lattices And Boolean Algebras and write the review.

Abstract Algebra: Theory and Applications is an open-source textbook that is designed to teach the principles and theory of abstract algebra to college juniors and seniors in a rigorous manner. Its strengths include a wide range of exercises, both computational and theoretical, plus many non-trivial applications. The first half of the book presents group theory, through the Sylow theorems, with enough material for a semester-long course. The second half is suitable for a second semester and presents rings, integral domains, Boolean algebras, vector spaces, and fields, concluding with Galois Theory.
This book is intended to be a thorough introduction to the subject of order and lattices, with an emphasis on the latter. It can be used for a course at the graduate or advanced undergraduate level or for independent study. Prerequisites are kept to a minimum, but an introductory course in abstract algebra is highly recommended, since many of the examples are drawn from this area. This is a book on pure mathematics: I do not discuss the applications of lattice theory to physics, computer science or other disciplines. Lattice theory began in the early 1890s, when Richard Dedekind wanted to know the answer to the following question: Given three subgroups EF , and G of an abelian group K, what is the largest number of distinct subgroups that can be formed using these subgroups and the operations of intersection and sum (join), as in E?FßÐE?FÑ?GßE?ÐF?GÑ and so on? In lattice-theoretic terms, this is the number of elements in the relatively free modular lattice on three generators. Dedekind [15] answered this question (the answer is #)) and wrote two papers on the subject of lattice theory, but then the subject lay relatively dormant until Garrett Birkhoff, Oystein Ore and others picked it up in the 1930s. Since then, many noted mathematicians have contributed to the subject, including Garrett Birkhoff, Richard Dedekind, Israel Gelfand, George Grätzer, Aleksandr Kurosh, Anatoly Malcev, Oystein Ore, Gian-Carlo Rota, Alfred Tarski and Johnny von Neumann.
This book is primarily designed for senior UG students wishing to pursue a course in Lattices/ Boolean Algebra, and those desirous of using lattice-theoretic concepts in their higher studies. Theoretical discussions amply illustrated by numerous examples and worked-out problems. Hints and solutions to select exercises added to the text as further help.
The importance of equational axioms emerged initially with the axiomatic approach to Boolean algebras, groups, and rings, and later in lattices. This unique research monograph systematically presents minimal equational axiom-systems for various lattice-related algebras, regardless of whether they are given in terms of ?join and meet? or other types of operations such as ternary operations. Each of the axiom-systems is coded in a handy way so that it is easy to follow the natural connection among the various axioms and to understand how to combine them to form new axiom systems. A new topic in this book is the characterization of Boolean algebras within the class of all uniquely complemented lattices. Here, the celebrated problem of E V Huntington is addressed, which ? according to G Gratzer, a leading expert in modern lattice theory ? is one of the two problems that shaped a century of research in lattice theory. Among other things, it is shown that there are infinitely many non-modular lattice identities that force a uniquely complemented lattice to be Boolean, thus providing several new axiom systems for Boolean algebras within the class of all uniquely complemented lattices. Finally, a few related lines of research are sketched, in the form of appendices, including one by Dr Willian McCune of the University of New Mexico, on applications of modern theorem-proving to the equational theory of lattices.
"The text can serve as an introduction to fundamentals in the respective areas from a residuated-maps perspective and with an eye on coordinatization. The historical notes that are interspersed are also worth mentioning....The exposition is thorough and all proofs that the reviewer checked were highly polished....Overall, the book is a well-done introduction from a distinct point of view and with exposure to the author’s research expertise." --MATHEMATICAL REVIEWS
This indispensable reference source contains a wealth of information on lattice theory. The book presents a survey of virtually everything published in the fields of partially ordered sets, semilattices, lattices, and Boolean algebras that was reviewed in Referativnyi Zhurnal Matematika from mid-1982 to the end of 1985. A continuation of a previous volume (the English translation of which was published by the AMS in 1989, as volume 141 in Translations - Series 2), this comprehensive work contains more than 2200 references. Many of the papers covered here were originally published in virtually inaccessible places. The compilation of the volume was directed by Milan Kolibiar of Comenius University at Bratislava and Lev A. Skornyakov of Moscow University. Of interest to mathematicians, as well as to philosophers and computer scientists in certain areas, this unique compendium is a must for any mathematical library.
This new edition of Introduction to Lattices and Order presents a radical reorganization and updating, though its primary aim is unchanged. The explosive development of theoretical computer science in recent years has, in particular, influenced the book's evolution: a fresh treatment of fixpoints testifies to this and Galois connections now feature prominently. An early presentation of concept analysis gives both a concrete foundation for the subsequent theory of complete lattices and a glimpse of a methodology for data analysis that is of commercial value in social science. Classroom experience has led to numerous pedagogical improvements and many new exercises have been added. As before, exposure to elementary abstract algebra and the notation of set theory are the only prerequisites, making the book suitable for advanced undergraduates and beginning graduate students. It will also be a valuable resource for anyone who meets ordered structures.
This book is an informal though systematic series of lectures on Boolean algebras. It contains background chapters on topology and continuous functions and includes hundreds of exercises as well as a solutions manual.