Download Free Sets Book in PDF and EPUB Free Download. You can read online Sets and write the review.

In this book, first published in 2003, categorical algebra is used to build a foundation for the study of geometry, analysis, and algebra.
"This accessible approach to set theory for upper-level undergraduates poses rigorous but simple arguments. Each definition is accompanied by commentary that motivates and explains new concepts. A historical introduction is followed by discussions of classes and sets, functions, natural and cardinal numbers, the arithmetic of ordinal numbers, and related topics. 1971 edition with new material by the author"--
This undergraduate text develops its subject through observations of the physical world, covering finite sets, cardinal numbers, infinite cardinals, and ordinals. Includes exercises with answers. 1958 edition.
Author and artist Mark Bennett compiles his entertaining collection of blueprints extrapolated from the storylines and sets of the 1950s to 1980s television sitcom homes millions of Americans grew up with. An extraordinary work of imagination, these blueprints of TV homes that are as familiar to us as our neighbor's den and backyard give us a fascinating "real life" view that the camera angles never offered. From Ward and June Cleaver's house to Rob and Laura Petrie's apartment to Mary Richards's Minneapolis bachelorette apartment to the Jetson's "house" in the clouds, each home is lovingly recreated with painstaking precision in the fine blue lines of architectural blueprints.
Suitable for advanced undergraduates and graduate students, this text introduces the broad scope of convexity. It leads students to open questions and unsolved problems, and it highlights diverse applications. Author Steven R. Lay, Professor of Mathematics at Lee University in Tennessee, reinforces his teachings with numerous examples, plus exercises with hints and answers. The first three chapters form the foundation for all that follows, starting with a review of the fundamentals of linear algebra and topology. They also survey the development and applications of relationships between hyperplanes and convex sets. Subsequent chapters are relatively self-contained, each focusing on a particular aspect or application of convex sets. Topics include characterizations of convex sets, polytopes, duality, optimization, and convex functions. Hints, solutions, and references for the exercises appear at the back of the book.
An introduction to the basic tools of the theory of (partially) ordered sets such as visualization via diagrams, subsets, homomorphisms, important order-theoretical constructions and classes of ordered sets. Using a thematic approach, the author presents open or recently solved problems to motivate the development of constructions and investigations for new classes of ordered sets. The text can be used as a focused follow-up or companion to a first proof (set theory and relations) or graph theory course.
Among other subjects explored are the Clements-Lindström extension of the Kruskal-Katona theorem to multisets and the Greene-Kleitmen result concerning k-saturated chain partitions of general partially ordered sets. Includes exercises and solutions.
The textbook literature on ordered sets is still rather limited. A lot of material is presented in this book that appears now for the first time in a textbook. Order theory works with combinatorial and set-theoretical methods, depending on whether the sets under consideration are finite or infinite. In this book the set-theoretical parts prevail. The book treats in detail lexicographic products and their connections with universally ordered sets, and further it gives thorough investigations on the structure of power sets. Other topics dealt with include dimension theory of ordered sets, well-quasi-ordered sets, trees, combinatorial set theory for ordered sets, comparison of order types, and comparibility graphs. Audience This book is intended for mathematics students and for mathemeticians who are interested in set theory. Only some fundamental parts of naïve set theory are presupposed. Since all proofs are worked out in great detail, the book should be suitable as a text for a course on order theory.
This easy-to-follow textbook introduces the mathematical language, knowledge and problem-solving skills that undergraduates need to study computing. The language is in part qualitative, with concepts such as set, relation, function and recursion/induction; but it is also partly quantitative, with principles of counting and finite probability. Entwined with both are the fundamental notions of logic and their use for representation and proof. Features: teaches finite math as a language for thinking, as much as knowledge and skills to be acquired; uses an intuitive approach with a focus on examples for all general concepts; brings out the interplay between the qualitative and the quantitative in all areas covered, particularly in the treatment of recursion and induction; balances carefully the abstract and concrete, principles and proofs, specific facts and general perspectives; includes highlight boxes that raise common queries and clear confusions; provides numerous exercises, with selected solutions.
This is the first systematic exposition of random sets theory since Matheron (1975), with full proofs, exhaustive bibliographies and literature notes Interdisciplinary connections and applications of random sets are emphasized throughout the book An extensive bibliography in the book is available on the Web at http://liinwww.ira.uka.de/bibliography/math/random.closed.sets.html, and is accompanied by a search engine