Download Free Set Theory For Computing Book in PDF and EPUB Free Download. You can read online Set Theory For Computing and write the review.

"Set Theory for Computing" provides a comprehensive account of set-oriented symbolic manipulation methods suitable for automated reasoning. Its main objective is twofold: 1) to provide a flexible formalization for a variety of set languages, and 2) to clarify the semantics of set constructs firmly established in modern specification languages and in the programming practice. Topics include: semantic unification, decision algorithms, modal logics, declarative programming, tableau-based proof techniques, and theory-based theorem proving. The style of presentation is self-contained, rigorous and accurate. Some familiarity with symbolic logic is helpful but not a requirement. This book is a useful resource for all advanced students, professionals, and researchers in computing sciences, artificial intelligence, automated reasoning, logic, and computational mathematics. It will serve to complement their intuitive understanding of set concepts with the ability to master them by symbolic and logically based algorithmic methods and deductive techniques.
Written for professionals learning the field of discrete mathematics, this book provides the necessary foundations of computer science without requiring excessive mathematical prerequisites. Using a balanced approach of theory and examples, software engineers will find it a refreshing treatment of applications in programming.
This must-read text presents the pioneering work of the late Professor Jacob (Jack) T. Schwartz on computational logic and set theory and its application to proof verification techniques, culminating in the ÆtnaNova system, a prototype computer program designed to verify the correctness of mathematical proofs presented in the language of set theory. Topics and features: describes in depth how a specific first-order theory can be exploited to model and carry out reasoning in branches of computer science and mathematics; presents an unique system for automated proof verification in large-scale software systems; integrates important proof-engineering issues, reflecting the goals of large-scale verifiers; includes an appendix showing formalized proofs of ordinals, of various properties of the transitive closure operation, of finite and transfinite induction principles, and of Zorn’s lemma.
This easy-to-follow textbook introduces the mathematical language, knowledge and problem-solving skills that undergraduates need to study computing. The language is in part qualitative, with concepts such as set, relation, function and recursion/induction; but it is also partly quantitative, with principles of counting and finite probability. Entwined with both are the fundamental notions of logic and their use for representation and proof. Features: teaches finite math as a language for thinking, as much as knowledge and skills to be acquired; uses an intuitive approach with a focus on examples for all general concepts; brings out the interplay between the qualitative and the quantitative in all areas covered, particularly in the treatment of recursion and induction; balances carefully the abstract and concrete, principles and proofs, specific facts and general perspectives; includes highlight boxes that raise common queries and clear confusions; provides numerous exercises, with selected solutions.
"This accessible approach to set theory for upper-level undergraduates poses rigorous but simple arguments. Each definition is accompanied by commentary that motivates and explains new concepts. A historical introduction is followed by discussions of classes and sets, functions, natural and cardinal numbers, the arithmetic of ordinal numbers, and related topics. 1971 edition with new material by the author"--
An up-to-date and comprehensive account of set-oriented symbolic manipulation and automated reasoning methods. This book is of interest to graduates and researchers in theoretical computer science and computational logic and automated reasoning.
Basic Category Theory for Computer Scientists provides a straightforward presentation of the basic constructions and terminology of category theory, including limits, functors, natural transformations, adjoints, and cartesian closed categories. Category theory is a branch of pure mathematics that is becoming an increasingly important tool in theoretical computer science, especially in programming language semantics, domain theory, and concurrency, where it is already a standard language of discourse. Assuming a minimum of mathematical preparation, Basic Category Theory for Computer Scientists provides a straightforward presentation of the basic constructions and terminology of category theory, including limits, functors, natural transformations, adjoints, and cartesian closed categories. Four case studies illustrate applications of category theory to programming language design, semantics, and the solution of recursive domain equations. A brief literature survey offers suggestions for further study in more advanced texts. Contents Tutorial • Applications • Further Reading
Part 1 of this book deals with theoretical contributions of rough set theory, and parts 2 and 3 focus on several real world data mining applications. The book thoroughly explores recent results in rough set research.
This monograph presents novel approaches and new results in fundamentals and applications related to rough sets and granular computing. It includes the application of rough sets to real world problems, such as data mining, decision support and sensor fusion. The relationship of rough sets to other important methods of data analysis – Bayes theorem, neurocomputing and pattern recognition is thoroughly examined. Another issue is the rough set based data analysis, including the study of decision making in conflict situations. Recent engineering applications of rough set theory are given, including a processor architecture organization for fast implementation of basic rough set operations and results concerning advanced image processing for unmanned aerial vehicles. New emerging areas of study and applications are presented as well as a wide spectrum of on-going research, which makes the book valuable to all interested in the field of rough set theory and granular computing.
A textbook on the semantics, proof theory, and metatheory of first-order logic. It covers naive set theory, first-order logic, sequent calculus and natural deduction, the completeness, compactness, and Löwenheim-Skolem theorems, Turing machines, and the undecidability of the halting problem and of first-order logic. It is based on the Open Logic project, and available for free download at slc.openlogicproject.org.