Download Free Serial And Parallel Robot Manipulators Book in PDF and EPUB Free Download. You can read online Serial And Parallel Robot Manipulators and write the review.

The robotics is an important part of modern engineering and is related to a group of branches such as electric
Complete, state-of-the-art coverage of robot analysis This unique book provides the fundamental knowledge needed for understanding the mechanics of both serial and parallel manipulators. Presenting fresh and authoritative material on parallel manipulators that is not available in any other resource, it offers an in-depth treatment of position analysis, Jacobian analysis, statics and stiffness analysis, and dynamical analysis of both types of manipulators, including a discussion of industrial and research applications. It also features: * The homotopy continuation method and dialytic elimination method for solving polynomial systems that apply to robot kinematics * Numerous worked examples and problems to reinforce learning * An extensive bibliography offering many resources for more advanced study Drawing on Dr. Lung-Wen Tsai's vast experience in the field as well as recent research publications, Robot Analysis is a first-rate text for upper-level undergraduate and graduate students in mechanical engineering, electrical engineering, and computer studies, as well as an excellent desktop reference for robotics researchers working in industry or in government.
Fundamental and technological topics are blended uniquely and developed clearly in nine chapters with a gradually increasing level of complexity. A wide variety of relevant problems is raised throughout, and the proper tools to find engineering-oriented solutions are introduced and explained, step by step. Fundamental coverage includes: Kinematics; Statics and dynamics of manipulators; Trajectory planning and motion control in free space. Technological aspects include: Actuators; Sensors; Hardware/software control architectures; Industrial robot-control algorithms. Furthermore, established research results involving description of end-effector orientation, closed kinematic chains, kinematic redundancy and singularities, dynamic parameter identification, robust and adaptive control and force/motion control are provided. To provide readers with a homogeneous background, three appendices are included on: Linear algebra; Rigid-body mechanics; Feedback control. To acquire practical skill, more than 50 examples and case studies are carefully worked out and interwoven through the text, with frequent resort to simulation. In addition, more than 80 end-of-chapter exercises are proposed, and the book is accompanied by a solutions manual containing the MATLAB code for computer problems; this is available from the publisher free of charge to those adopting this work as a textbook for courses.
Parallel structures are more effective than serial ones for industrial automation applications that require high precision and stiffness, or a high load capacity relative to robot weight. Although many industrial applications have adopted parallel structures for their design, few textbooks introduce the analysis of such robots in terms of dynamics
The contributions in this book were presented at the sixth international symposium on Advances in Robot Kinematics organised in June/July 1998 in Strobl/Salzburg in Austria. The preceding symposia of the series took place in Ljubljana (1988), Linz (1990), Ferrara (1992), Ljubljana (1994), and Piran (1996). Ever since its first event, ARK has attracted the most outstanding authors in the area and managed to create a perfect combination of professionalism and friendly athmosphere. We are glad to observe that, in spite of a strong competition of many international conferences and meetings, ARK is continuing to grow in terms of the number of participants and in terms of its scientific impact. In its ten years, ARK has contributed to develop a remarkable scientific community in the area of robot kinematics. The last four symposia were organised under the patronage of the International Federation for the Theory of Machines and Mechanisms -IFToMM. interest to researchers, doctoral students and teachers, The book is of engineers and mathematicians specialising in kinematics of robots and mechanisms, mathematical modelling, simulation, design, and control of robots. It is divided into sections that were found as the prevalent areas of the contemporary kinematics research. As it can easily be noticed, an important part of the book is dedicated to various aspects of the kinematics of parallel mechanisms that persist to be one of the most attractive areas of research in robot kinematics.
Parallel manipulators are characterized as having closed-loop kinematic chains. Compared to serial manipulators, which have open-ended structure, parallel manipulators have many advantages in terms of accuracy, rigidity and ability to manipulate heavy loads. Therefore, they have been getting many attentions in astronomy to flight simulators and especially in machine-tool industries.The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in parallel manipulators. This book mainly introduces advanced kinematic and dynamic analysis methods and cutting edge control technologies for parallel manipulators. Even though this book only contains several samples of research activities on parallel manipulators, I believe this book can give an idea to the reader about what has been done in the field recently, and what kind of open problems are in this area.
This book presents a collection of quality chapters on the state-of-the-art of research efforts in the area of smart devices and novel machine design, as well as their practical applications to enable advanced manufacturing. The first section presents a broad-based review of several key areas of research in smart devices and machines. The second section is focused on presenting an in-depth treatment of a particular device or machine. The book will be of interest to a broad readership.
This book presents the most recent research results on modeling and control of robot manipulators. Chapter 1 gives unified tools to derive direct and inverse geometric, kinematic and dynamic models of serial robots and addresses the issue of identification of the geometric and dynamic parameters of these models. Chapter 2 describes the main features of serial robots, the different architectures and the methods used to obtain direct and inverse geometric, kinematic and dynamic models, paying special attention to singularity analysis. Chapter 3 introduces global and local tools for performance analysis of serial robots. Chapter 4 presents an original optimization technique for point-to-point trajectory generation accounting for robot dynamics. Chapter 5 presents standard control techniques in the joint space and task space for free motion (PID, computed torque, adaptive dynamic control and variable structure control) and constrained motion (compliant force-position control). In Chapter 6, the concept of vision-based control is developed and Chapter 7 is devoted to specific issue of robots with flexible links. Efficient recursive Newton-Euler algorithms for both inverse and direct modeling are presented, as well as control methods ensuring position setting and vibration damping.
Robots are a key element in current industrial processes, as they can be applied to a number of tasks, increasing both quality and productivity. Traditionally, serial robots have been installed in factories, as their wide operating space allowed them to fulfill a number of tasks. However, due to their high moving mass and single kinematic chain structure, these robots present some disadvantages when high speed, accuracy or heavy load handling tasks have to be executed. Parallel robots provide an interesting alternative to these application fields, as their multiple kinematic chain structure offers increased stiffness, allowing reduced positioning errors, lighter mechanisms and increased load/weight ratios. In this book, Chapter One addresses a new control strategy for parallel manipulators based on L1 adaptive control. This latter is known for its decoupled control and estimation loops, enabling fast adaptation and guaranteed robustness. Chapter Two focuses on the control of parallel robots. Chapter Three reviews structure synthesis of fully-isotropic two-rotational and two-translational parallel robotic manipulators. Chapter Four reviews the new prototype of the two-legged, parallel kinematic walking robot CENTAUROB, developed at Hamburg University of Technology. Chapter Five analyzes and robustly controls the 6-DOF 3-legged Wide-Open parallel manipulator, using a Lyapunov analysis approach.