Download Free Sensory Ecology Behaviour And Evolution Book in PDF and EPUB Free Download. You can read online Sensory Ecology Behaviour And Evolution and write the review.

Throughout their lives animals must complete many tasks, including finding food, avoiding predators, attracting mates, and navigating through a complex and dynamic environment. Consequently, they have evolved a staggering array of sensory organs that are fundamental to survival and reproduction and shape much of their evolution and behaviour. Sensory ecology deals with how animals acquire, process, and use information in their lives, and the sensory systems involved. It investigates the type of information that is gathered by animals, how it is used in a range of behaviours, and the evolution of such traits. It deals with both mechanistic questions (e.g. how sensory receptors capture information from the environment, and how the physical attributes of the environment affect information transmission) and functional questions (e.g. the adaptive significance of the information used by the animal to make a decision). Recent research has dealt more explicitly with how sensory systems are involved with and even drive evolutionary change, including the formation of new species. Sensory Ecology, Behaviour, and Evolution provides a broad introduction to sensory ecology across a wide range of taxonomic groups, covering all the various sensory modalities (e.g. sound, visual, chemical, magnetic, and electric) relating to diverse areas spanning anti-predator strategies, foraging, mate choice, navigation and more, with the aim being to illustrate key principles and differences. This accessible textbook is suitable for senior undergraduates, graduate students, and professional academics taking courses or conducting research in sensory ecology/biology, neuroethology, behavioural and evolutionary ecology, communication, and signalling. It will also be of relevance and use to psychologists interested in sensory information and behaviour.
Throughout their lives animals must complete many tasks, including finding food, avoiding predators, attracting mates, and navigating through a complex and dynamic environment. Consequently, they have evolved a staggering array of sensory organs that are fundamental to survival and reproduction and shape much of their evolution and behaviour. Sensory ecology deals with how animals acquire, process, and use information in their lives, and the sensory systems involved. It investigates the type of information that is gathered by animals, how it is used in a range of behaviours, and the evolution of such traits. It deals with both mechanistic questions (e.g. how sensory receptors capture information from the environment, and how the physical attributes of the environment affect information transmission) and functional questions (e.g. the adaptive significance of the information used by the animal to make a decision). Recent research has dealt more explicitly with how sensory systems are involved with and even drive evolutionary change, including the formation of new species. Sensory Ecology, Behaviour, and Evolution provides a broad introduction to sensory ecology across a wide range of taxonomic groups, covering all the various sensory modalities (e.g. sound, visual, chemical, magnetic, and electric) relating to diverse areas spanning anti-predator strategies, foraging, mate choice, navigation and more, with the aim being to illustrate key principles and differences. This accessible textbook is suitable for senior undergraduates, graduate students, and professional academics taking courses or conducting research in sensory ecology/biology, neuroethology, behavioural and evolutionary ecology, communication, and signalling. It will also be of relevance and use to psychologists interested in sensory information and behaviour.
The third edition of this successful textbook looks again at the influence of natural selection on behavior - an animal's struggle to survive by exploiting resources, avoiding predators, and maximizing reproductive success. In this edition, new examples are introduced throughout, many illustrated with full color photographs. In addition, important new topics are added including the latest techniques of comparative analysis, the theory and application of DNA fingerprinting techniques, extensive new discussion on brood parasite/host coevolution, the latest ideas on sexual selection in relation to disease resistance, and a new section on the intentionality of communication. Written in the lucid style for which these two authors are renowned, the text is enhanced by boxed sections illustrating important concepts and new marginal notes that guide the reader through the text. This book will be essential reading for students taking courses in behavioral ecology. The leading introductory text from the two most prominent workers in the field. Second colour in the text. New section of four colour plates. Boxed sections to ilustrate difficult and important points. New larger format with marginal notes to guide the reader through the text. Selected further reading at the end of each chapter.
Important breakthroughs have recently been made in our understanding of the cognitive and sensory abilities of pollinators, such as how pollinators perceive, memorize, and react to floral signals and rewards; how they work flowers, move among inflorescences, and transport pollen. These new findings have obvious implications for the evolution of floral display and diversity, but most existing publications are scattered across a wide range of journals in very different research traditions. This book brings together outstanding scholars from many different fields of pollination biology, integrating the work of neuroethologists and evolutionary ecologists to present a multidisciplinary approach.
How do animals perceive the world, learn, remember, search for food or mates, communicate, and find their way around? Do any nonhuman animals count, imitate one another, use a language, or have a culture? What are the uses of cognition in nature and how might it have evolved? What is the current status of Darwin's claim that other species share the same "mental powers" as humans, but to different degrees? In this completely revised second edition of Cognition, Evolution, and Behavior, Sara Shettleworth addresses these questions, among others, by integrating findings from psychology, behavioral ecology, and ethology in a unique and wide-ranging synthesis of theory and research on animal cognition, in the broadest sense--from species-specific adaptations of vision in fish and associative learning in rats to discussions of theory of mind in chimpanzees, dogs, and ravens. She reviews the latest research on topics such as episodic memory, metacognition, and cooperation and other-regarding behavior in animals, as well as recent theories about what makes human cognition unique. In every part of this new edition, Shettleworth incorporates findings and theoretical approaches that have emerged since the first edition was published in 1998. The chapters are now organized into three sections: Fundamental Mechanisms (perception, learning, categorization, memory), Physical Cognition (space, time, number, physical causation), and Social Cognition (social knowledge, social learning, communication). Shettleworth has also added new chapters on evolution and the brain and on numerical cognition, and a new chapter on physical causation that integrates theories of instrumental behavior with discussions of foraging, planning, and tool using.
This is the first integrated synthesis of avian sensory ecology, explaining the broad principles and taking the reader into the sensory world of birds from an evolutionary and ecological perspective.
A comprehensive treatment of visual ecology Visual ecology is the study of how animals use visual systems to meet their ecological needs, how these systems have evolved, and how they are specialized for particular visual tasks. Visual Ecology provides the first up-to-date synthesis of the field to appear in more than three decades. Featuring some 225 illustrations, including more than 140 in color, spread throughout the text, this comprehensive and accessible book begins by discussing the basic properties of light and the optical environment. It then looks at how photoreceptors intercept light and convert it to usable biological signals, how the pigments and cells of vision vary among animals, and how the properties of these components affect a given receptor's sensitivity to light. The book goes on to examine how eyes and photoreceptors become specialized for an array of visual tasks, such as navigation, evading prey, mate choice, and communication. A timely and much-needed resource for students and researchers alike, Visual Ecology also includes a glossary and a wealth of examples drawn from the full diversity of visual systems. The most up-to-date overview of visual ecology available Features some 225 illustrations, including more than 140 in color, spread throughout the text Guides readers from the basic physics of light to the role of visual systems in animal behavior Includes a glossary and a wealth of real-world examples
Martin Stevens explores the extraordinary variety of senses in the animal kingdom, and discusses the cutting-edge science that is shedding light on these secret worlds. Our senses of vision, smell, taste, hearing, and touch are essential for us to respond to threats, communicate and interact with the world around us. This is true for all animals - their sensory systems are key to survival, and without them animals would be completely helpless. However, the sensory systems of other animals work very differently from ours. For example, many animals from spiders to birds can detect and respond to ultraviolet light, to which we are blind. Other animals, including many insects, rodents, and bats can hear high-frequency ultrasonic sounds well beyond our own hearing range. Many other species have sensory systems that we lack completely, such as the magnetic sense of birds, turtles, and other animals, or the electric sense of many fish. These differences in sensory ability have a major bearing on the ways that animals behave and live in different environments, and also affect their evolution and ecology. In this book, Martin Stevens explores the remarkable sensory systems that exist in nature, and what they are used for. Discussing how different animal senses work, he also considers how they evolve, how they are shaped by the environment in which an animal lives, and the pioneering science that has uncovered how animals use their senses. Throughout, he celebrates the remarkable diversity of life, and shows how the study of sensory systems has shed light on some of the most important issues in animal behaviour, physiology, and evolution.
Zooplankton is a major work of reference for researchers in plankton biology, physiology and behavior, which combines behavioral and psychological approaches to the study of plankton on present and interdisciplinary investigation of sensory processes in pelagic environments. The breadth of perspective thus achieved provides valuable insights into the larger scale ecological processes of biological productivity, community structure and population dynamics. Technological advances in almost all aspects of biological research have opened up opportunities for a re-examination of the sensory ecology of planktonic organisms. In this wide-ranging collection, leading researchers in planktonic behavior and physiology address the rapidly developing interface between these two major areas. The studies presented range from the laboratory to the field and from the cell to the whole organism, but share the common goal of understanding the special sensory world of organisms that live in pelagic environments and how their behavior and physiology relate to it.
Ranging from crocodiles and penguins to seals and whales, this synthesis explores the function and evolution of sensory systems in animals whose ancestors lived on land. It explores the dramatic transformation of smell, taste, sight, hearing, and balance that occurred as lineages of reptiles, birds, and mammals returned to aquatic environments.