Download Free Sensitivity Of Seismic Response To Variations In The Woodford Shale Delaware Basin West Texas Book in PDF and EPUB Free Download. You can read online Sensitivity Of Seismic Response To Variations In The Woodford Shale Delaware Basin West Texas and write the review.

A comprehensive overview of the key geologic, geomechanical and engineering principles that govern the development of unconventional oil and gas reservoirs. Covering hydrocarbon-bearing formations, horizontal drilling, reservoir seismology and environmental impacts, this is an invaluable resource for geologists, geophysicists and reservoir engineers.
When nature goes haywire in Texas, it isn't usually an earthshaking event. Though droughts, floods, tornadoes, and hail all keep Texans talking about the unpredictable weather, when it comes to earthquakes, most of us think we're on terra firma in this state. But we're wrong! Nearly every year, earthquakes large enough to be felt by the public occur somewhere in Texas. This entertaining, yet authoritative book covers "all you really need to know" about earthquakes in general and in Texas specifically. The authors explain how earthquakes are caused by natural forces or human activities, how they're measured, how they can be predicted, and how citizens and governments should prepare for them. They also thoroughly discuss earthquakes in Texas, looking at the occurrences and assessing the risks region by region and comparing the amount of seismic activity in Texas to other parts of the country and the world. The book concludes with a compendium of over one hundred recorded earthquakes in Texas from 1811 to 2000 that briefly describes the location, timing, and effects of each event.
In the past several years, some energy technologies that inject or extract fluid from the Earth, such as oil and gas development and geothermal energy development, have been found or suspected to cause seismic events, drawing heightened public attention. Although only a very small fraction of injection and extraction activities among the hundreds of thousands of energy development sites in the United States have induced seismicity at levels noticeable to the public, understanding the potential for inducing felt seismic events and for limiting their occurrence and impacts is desirable for state and federal agencies, industry, and the public at large. To better understand, limit, and respond to induced seismic events, work is needed to build robust prediction models, to assess potential hazards, and to help relevant agencies coordinate to address them. Induced Seismicity Potential in Energy Technologies identifies gaps in knowledge and research needed to advance the understanding of induced seismicity; identify gaps in induced seismic hazard assessment methodologies and the research to close those gaps; and assess options for steps toward best practices with regard to energy development and induced seismicity potential.
A strong case can be made that foreland basins are where the casual links between sedimentation and tectonic events were first recognized, as evidenced by the interpretations of geologists working in classic foreland areas. This Special Publication was derived from a Research Symposium entitled "Stratigraphic Sequences in Foreland Basins" held at the AAPG-SEPM joint annual meeting on June, 1992, in Calgary, Alberta, Canada. This volume provides a well-balanced perspective of current research on foreland basin stratigraphy and also serves as another element in the evolving framework that comprises our understanding of foreland basins. Given that so many of earth's resources are found in foreland basins and that foreland basin strata often provide the only preserved record of the tectonic events that led to basin development, the impetus for continued studies of foreland basin strata should remain for many generations of geologists to come.
Reservoir Characterization is a collection of papers presented at the Reservoir Characterization Technical Conference, held at the Westin Hotel-Galleria in Dallas on April 29-May 1, 1985. Conference held April 29-May 1, 1985, at the Westin Hotel—Galleria in Dallas. The conference was sponsored by the National Institute for Petroleum and Energy Research, Bartlesville, Oklahoma. Reservoir characterization is a process for quantitatively assigning reservoir properties, recognizing geologic information and uncertainties in spatial variability. This book contains 19 chapters, and begins with the geological characterization of sandstone reservoir, followed by the geological prediction of shale distribution within the Prudhoe Bay field. The subsequent chapters are devoted to determination of reservoir properties, such as porosity, mineral occurrence, and permeability variation estimation. The discussion then shifts to the utility of a Bayesian-type formalism to delineate qualitative ""soft"" information and expert interpretation of reservoir description data. This topic is followed by papers concerning reservoir simulation, parameter assignment, and method of calculation of wetting phase relative permeability. This text also deals with the role of discontinuous vertical flow barriers in reservoir engineering. The last chapters focus on the effect of reservoir heterogeneity on oil reservoir. Petroleum engineers, scientists, and researchers will find this book of great value.
Investigations about porosity in petroleum reservoir rocks are discussed by Schmoker and Gautier. Pollastro discusses the uses of clay minerals as exploration tools that help to elucidate basin, source-rock, and reservoir history. The status of fission-track analysis, which is useful for determining the thermal and depositional history of deeply buried sedimentary rocks, is outlined by Naeser. The various ways workers have attempted to determine accurate ancient and present-day subsurface temperatures are summarized with numerous references by Barker. Clayton covers three topics: (1) the role of kinetic modeling in petroleum exploration, (2) biological markers as an indicator of depositional environment of source rocks and composition of crude oils, and (3) geochemistry of sulfur in source rocks and petroleum. Anders and Hite evaluate the current status of evaporite deposits as a source for crude oil.
Anatomy of a Paleozoic Basin: The Permian Basin, USA By any standard, the Permian Basin of West Texas and New Mexico is a "super basin." With cumulative oil production of nearly 40 billion barrels (Bbbl) and annual production of nearly 2 Bbbl, it's currently one of the most important hydrocarbon-producing basins in the world. More than 29 Bbbl of this production have come from conventional (carbonate and sandstone) reservoirs, about 75 percent from carbonate reservoirs. Approximately 9-10 Bbbl of the basin's cumulative oil production have come from unconventional targets-primarily organic-matter-rich mudrocks and associated facies-during the last 10 years. The Permian Basin contains perhaps a greater volume of these mudrocks than that of any other basin, a major reason for its current global prominence among hydrocarbon-producing basins. The Permian Basin also contains one of the most extensive data sets in terms of wells drilled, cored wells, and adjacent outcrop analogs, providing a basis for studies that not only helps define the distribution of hydrocarbons but also serves as an excellent laboratory for examining basin-forming processes.This two-volume Bureau of Economic Geology Report of Investigations and AAPG Memoir contains 26 papers covering a breadth of Permian Basin topics, including 4 papers on the basin's structural geology, tectonics, and Precambrian geology; 4 papers on its paleontology and biostratigraphy; 16 on its sedimentology and stratigraphy; 1 on its reservoir systems; and 1 that provides a history and synthesis of the major depositional and deformational events that formed the basin. The goal of this set of papers is to capture, in a single publication, the wealth of information and knowledge about Permian Basin geology that has been generated over the 60 years that have passed since John Galley's early comprehensive paper on the basin in 1958.
Geologists, engineers, and petrophysicists concerned with hydrocarbon production from naturally fractured reservoirs will find this book a valuable tool for obtaining pertinent rock data to evaluate reserves and optimize well location and performance. Nelson emphasizes geological, petrophysical, and rock mechanics to complement other studies of the subject that use well logging and classical engineering approaches. This well organized, updated edition contains a wealth of field and laboratory data, case histories, and practical advice. - A great how-to-guide for anyone working with fractured or highly anisotropic reservoirs - Provides real-life illustrations through case histories and field and laboratory data
An accessible resource, covering the fundamentals of carbonate reservoir engineering Includes discussions on how, where and why carbonate are formed, plus reviews of basic sedimentological and stratigraphic principles to explain carbonate platform characteristics and stratigraphic relationships Offers a new, genetic classification of carbonate porosity that is especially useful in predicting spatial distribution of pore networks.
The monograph offers a comprehensive discussion of the role of evaporites in hydrocarbon generation and trapping, and new information on low temperature and high temperature ores. It also provides a wealth of information on exploitable salts, in a comprehensive volume has been assembled and organized to provide quick access to relevant information on all matters related to evaporites and associated brines. In addition, there are summaries of evaporite karst hazards, exploitative methods and problems that can arise in dealing with evaporites in conventional and solution mining. This second edition has been revised and extended, with three new chapters focusing on ore minerals in different temperature settings and a chapter on meta-evaporites. Written by a field specialist in research and exploration, the book presents a comprehensive overview of the realms of low- and high-temperature evaporite evolution. It is aimed at earth science professionals, sedimentologists, oil and gas explorers, mining geologists as well as environmental geologists.