Download Free Sensitivity Analysis And Optimization Of High Speed Vlsi Interconnects Book in PDF and EPUB Free Download. You can read online Sensitivity Analysis And Optimization Of High Speed Vlsi Interconnects and write the review.

Modeling and Simulation of High Speed VLSI Interconnects brings together in one place important contributions and state-of-the-art research results in this rapidly advancing area. Modeling and Simulation of High Speed VLSI Interconnects serves as an excellent reference, providing insight into some of the most important issues in the field.
Masters Theses in the Pure and Applied Sciences was first conceived, published, and disseminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS)* at Purdue University in 1957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dis semination phases of the activity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this joint undertaking we had concluded that it was in the interest of all concerned if the printing and distribution of the volumes were handled by an international publishing house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Corporation of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 38 (thesis year 1993) a total of 13,787 thesis titles from 22 Canadian and 164 United States universities. We are sure that this broader base for these titles reported will greatly enhance the value of this impor tant annual reference work. While Volume 38 reports theses submitted in 1993, on occasion, certain uni versities do report theses submitted in previous years but not reported at the time.
The intense drive for signal integrity has been at the forefront ofrapid and new developments in CAD algorithms. Thousands ofengineers, intent on achieving the best design possible, use SPICE on a daily basis for analog simulation and general circuit analysis. But the strained demand for high data speeds, coupled with miniaturizationon an unprecedented scale, has highlighted the previously negligible effects of interconnects; effects which are not always handled appro priately by the present levels of SPICE. Signals at these higher speeds may be degraded by long interconnect lengths compared to the increasingly shorter sig nal rise times. Interconnect structures can be diverse (pins, connectors, leads, microstrips, striplines, etc. ) and present at any of the hierarchical packaging levels: integrated circuits, printed circuit boards, multi-chip modules or sys tem backplanes. Analysis of these effects in any CAD package has become a necessity. Asymptotic waveform evaluation (AWE) and other moment matching tech niques have recently proven useful in the analysis of interconnect structures and various networks containing large linear structures with nonlinear termi nations. Previously, all that was available to the designer was a full SPICE simulation or a quick but uncertain timing estimation. Moment matching, used in linear systems analysis as a method of model reduction, describes a method to extract a small set of dominant poles from a large network. The information is obtained from the Taylor series coefficients (moments) of that system.
Cited in Sheehy, Chen, and Hurt . Volume 38 (thesis year 1993) reports a total of 13,787 thesis titles from 22 Canadian and 164 US universities. As in previous volumes, thesis titles are arranged by discipline and by university within each discipline. Any accredited university or college with a grad
This volume documents the research carried out by visiting scientists attached to the Institute for Mathematical Sciences (IMS) at the National University of Singapore and the Institute of High Performance Computing (IHPC) under the program “Advances and Mathematical Issues in Large Scale Simulation.” From 2002 to 2003, researchers from various countries gathered to initiate interesting and innovative work on various themes related to multiscale simulation and fast algorithms.Today, modeling and simulation are used extensively to solve complex problems and to reduce the use of experimentation during the design and analysis stage. It is important to know the various issues that have to be considered in the successful development of computational methodologies for such work.This volume is a compilation of the research by various visiting scientists in the area of modeling and multiscale simulation. Each article covers a major project and documents how computational methodology, mathematical modeling, high performance computing and simulation are combined in a multiscale scheme to solve a variety of complex problems. Some of these include the design, synthesis, processing, characterization and manufacture of nanomaterials and nanostructures, new algorithms for computational work, and grid computing.Through the included examples, readers can realize the vast potential of computational modeling and large scale simulation for the solution of problems in a variety of disciplines and applications.
Volume 36 reports (for thesis year 1991) a total of 11,024 thesis titles from 23 Canadian and 161 US universities. The organization of the volume, as in past years, consists of thesis titles arranged by discipline, and by university within each discipline. The titles are contributed by any and all a
Contemporary high-frequency engineering design heavily relies on full-wave electromagnetic (EM) analysis. This is primarily due to its versatility and ability to account for phenomena that are important from the point of view of system performance. Unfortunately, versatility comes at the price of a high computational cost of accurate evaluation. Consequently, utilization of simulation models in the design processes is challenging although highly desirable. The aforementioned problems can be alleviated by means of surrogate modeling techniques, the most popular of which are data-driven models. Although a large variety of methods are available, they are all affected by the curse of dimensionality. This is especially pronounced in high-frequency electronics, where typical system responses are highly nonlinear. Construction of practically useful surrogates covering wide ranges of parameters and operating conditions is a considerable challenge.Surrogate Modeling for High-Frequency Design presents a selection of works representing recent advancements in surrogate modeling and their applications to high-frequency design. Some chapters provide a review of specific topics such as neural network modeling of microwave components, while others describe recent attempts to improve existing modeling methodologies. Furthermore, the book features numerous applications of surrogate modeling methodologies to design optimization and uncertainty quantification of antenna, microwave, and analog RF circuits.
Digital Timing Macromodeling for VLSI Design Verification first of all provides an extensive history of the development of simulation techniques. It presents detailed discussion of the various techniques implemented in circuit, timing, fast-timing, switch-level timing, switch-level, and gate-level simulation. It also discusses mixed-mode simulation and interconnection analysis methods. The review in Chapter 2 gives an understanding of the advantages and disadvantages of the many techniques applied in modern digital macromodels. The book also presents a wide variety of techniques for performing nonlinear macromodeling of digital MOS subcircuits which address a large number of shortcomings in existing digital MOS macromodels. Specifically, the techniques address the device model detail, transistor coupling capacitance, effective channel length modulation, series transistor reduction, effective transconductance, input terminal dependence, gate parasitic capacitance, the body effect, the impact of parasitic RC-interconnects, and the effect of transmission gates. The techniques address major sources of errors in existing macromodeling techniques, which must be addressed if macromodeling is to be accepted in commercial CAD tools by chip designers. The techniques presented in Chapters 4-6 can be implemented in other macromodels, and are demonstrated using the macromodel presented in Chapter 3. The new techniques are validated over an extremely wide range of operating conditions: much wider than has been presented for previous macromodels, thus demonstrating the wide range of applicability of these techniques.
Retaining the comprehensive and in-depth approach that cemented the bestselling first edition's place as a standard reference in the field, the Handbook of Semiconductor Manufacturing Technology, Second Edition features new and updated material that keeps it at the vanguard of today's most dynamic and rapidly growing field. Iconic experts Robert Doering and Yoshio Nishi have again assembled a team of the world's leading specialists in every area of semiconductor manufacturing to provide the most reliable, authoritative, and industry-leading information available. Stay Current with the Latest Technologies In addition to updates to nearly every existing chapter, this edition features five entirely new contributions on... Silicon-on-insulator (SOI) materials and devices Supercritical CO2 in semiconductor cleaning Low-κ dielectrics Atomic-layer deposition Damascene copper electroplating Effects of terrestrial radiation on integrated circuits (ICs) Reflecting rapid progress in many areas, several chapters were heavily revised and updated, and in some cases, rewritten to reflect rapid advances in such areas as interconnect technologies, gate dielectrics, photomask fabrication, IC packaging, and 300 mm wafer fabrication. While no book can be up-to-the-minute with the advances in the semiconductor field, the Handbook of Semiconductor Manufacturing Technology keeps the most important data, methods, tools, and techniques close at hand.