Download Free Semiconducting Chalcogenide Glass I Book in PDF and EPUB Free Download. You can read online Semiconducting Chalcogenide Glass I and write the review.

Chalcogenide glass is made up of many elements from the Chalcogenide group. The glass is transparent to infrared light and is useful as a semiconductor in many electronic devices. For example, chalcogenide glass fibers are a component of devices used to perform laser surgery. This book is a comprehensive survey of the current state of science and technology in the field of chalcogenide semiconductor glasses. While the majority of the book deals with properties of chalcogenide glass, chapters also deal with industrial applications, synthesis and purification of chalcogenide glass, and glass structural modification. The first individual or collective monograph written by Eastern European scientists known to Western readers regarding structural and chemical changes in chalcogenide vitreous semiconductors(CVS) Chapters written by B.G. Kolomiets who discovered the properties of chalcogenide glass in 1955 Provides evidence and discussion for problems discussed by authors from opposing positions.
Chalcogenide glass is made up of many elements from the Chalcogenide group. The glass is transparent to infrared light and is useful as a semiconductor in many electronic devices. For example, chalcogenide glass fibers are a component of devices used to perform laser surgery. This book is a comprehensive survey of the current state of science and technology in the field of chalcogenide semiconductor glasses. While the majority of the book deals with properties of chalcogenide glass, chapters also deal with industrial applications, synthesis and purification of chalcogenide glass, and glass structural modification. The first individual or collective monograph written by Eastern European scientists known to Western readers regarding structural and chemical changes in chalcogenide vitreous semiconductors(CVS)Chapters written by B.G. Kolomiets who discovered the properties of chalcogenide glass in 1955Provides evidence and discussion for problems discussed by authors from opposing positions.
This book provides introductory, comprehensive, and concise descriptions of amorphous chalcogenide semiconductors and related materials. It includes comparative portraits of the chalcogenide and related materials including amorphous hydrogenated Si, oxide and halide glasses, and organic polymers. It also describes effects of non-equilibrium disorder, in comparison with those in crystalline semiconductors.
Chalcogenide glass is made up of many elements from the Chalcogenide group. The glass is transparent to infrared light and is useful as a semiconductor in many electronic devices. For example, chalcogenide glass fibers are a component of devices used to perform laser surgery. The properties of chalcogenide glass result not only from their chemical composition and atomic structure, but also from the impact of numerous external factors. A comprehensive survey is presented of the properties of chalcogenide glass under various external impacts. Practical recommendations are presented for a wide range of applications. Part II is the second part of a three-volume work within the Semiconductors and Semimetals series.* The first collective monograph written by Eastern European scientists on the electrical and optical properties of chalcogenide vitreous semiconductors (CVS).* Contributions by B.G. Kolomiets, who discovered the properties of chalcogenide glass in 1955!* Provides objective evidence and discussion by authors from opposing positions.
Chalcogenide glass is made up of many elements from the Chalcogenide group. The glass is transparent to infrared light and is useful as a semiconductor in many electronic devices. For example, chalcogenide glass fibers are a component of devices used to perform laser surgery. Semiconducting Chalcogenide Glass III: Applications of Chalcogenide Glasses is a comprehensive overview of designs of various chalcogenide glass devices are presented, including switches, phase inverters, voltage stabilizers, oscillators, indicators and display control circuits, memory devices, and sensors. A special chapter is devoted to chalcogenide glass applications in optical fibers. This collective monograph is intended to survey the current state of chalcogenide glass applications to facilitate further development. - The first collective monograph written by Eastern European scientists covering electrical and optical properties of chalcogenide vitreous semiconductors (CVS) - Contributions by B.G. Kolomiets, who discovered the properties of chalcogenide glass in 1955! - Provides evidence and discussion by authors from opposing positions
This book reviews techniques used to characterize non-linear optical constants of chalcogenide glasses in bulk or thin films, and presents the properties of many chalcogenide systems. A range of applications of these glasses are surveyed, including ultra-fast switching, optical limiting, second harmonic generation and electro-optic effects. Also addressed are suitability of chalcogenide films in all-optical integrated circuits, fabrication of rib as well as ridge waveguides and of fiber gratings.
The earliest experimental data on an oxygen-free glass have been published by Schulz-Sellack in 1870 [1]. Later on, in 1902, Wood [2], as well as Meier in 1910 [3], carried out the first researches on the optical properties of vitreous selenium. The interest in the glasses that exhibit transparency in the infrared region of the optical spectrum rose at the beginning of the twentieth century. Firstly were investigated the heavy metal oxides and the transparency limit was extended from (the case of the classical oxide glasses) up to wavelength. In order to extend this limit above the scientists tried the chemical compositions based on the elements of the sixth group of the Periodic Table, the chalcogens: sulphur, selenium and tellurium. The systematic research in the field of glasses based on chalcogens, called chalcogenide glasses, started at the middle of our century. In 1950 Frerichs [4] investigated the glass and published the paper: “New optical glasses transparent in infrared up to 12 . Several years later he started the study of the selenium glass and prepared several binary glasses with sulphur [5]. Glaze and co-workers [6] developed in 1957 the first method for the preparation of the glass at the industrial scale, while Winter-Klein [7] published reports on numerous chalcogenides prepared in the vitreous state.
Structural Chemistry of Glasses provides detailed coverage of the subject for students and professionals involved in the physical chemistry aspects of glass research. Starting with the historical background and importance of glasses, it follows on with methods of preparation, structural and bonding theories, and criteria for glass formation including new approaches such as the constraint model. Glass transition is considered, as well as the wide range of theoretical approaches that are used to understand this phenomenon. The author provides a detailed discussion of Boson peaks, FSDP, Polymorphism, fragility, structural techniques, and theoretical modelling methods such as Monte Carlo and Molecular Dynamics simulation. The book covers ion and electron transport in glasses, mixed-alkali effect, fast ion conduction, power law and scaling behaviour, electron localization, charged defects, photo-structural effects, elastic properties, pressure-induced transitions, switching behaviour, colour, and optical properties of glasses. Special features of a variety of oxide, chalcogenide, halide, oxy-nitride and metallic gasses are discussed. With over 140 sections, this book captures most of the important and topical aspects of glass science, and will be useful for both newcomers to the subject and the experienced practitioner.
This book introduces readers to a wide range of applications for elements in Group 16 of the periodic table, such as, optical fibers for communication and sensing, X-ray imaging, electrochemical sensors, data storage devices, biomedical applications, photovoltaics and IR detectors, the rationale for these uses, the future scope of their applications, and expected improvements to existing technologies. Following an introductory section, the book is broadly divided into three parts—dealing with Sulfur, Selenium, and Tellurium. The sections cover the basic structure of the elements and their compounds in bulk and nanostructured forms; properties that make these useful for various applications, followed by applications and commercial products. As the global technology revolution necessitates the search for new materials and more efficient devices in the electronics and semiconductor industry, Applications of Chalcogenides: S, Se, and Te is an ideal book for a wide range of readers in industry, government and academic research facilities looking beyond silicon for materials used in the electronic and optoelectronic industry as well as biomedical applications.
Amorphous semiconductors are subtances in the amorphous solid state that have the properties of a semiconductor and which are either covalent or tetrahedrally bonded amorphous semiconductors or chelcogenide glasses. Developed from both a theoretical and experimental viewpoint Deals with, amongst others, preparation techniques, structural, optical and electronic properties, and light induced phenomena Explores different types of amorphous semiconductors including amorphous silicon, amorphous semiconducting oxides and chalcogenide glasses Applications include solar cells, thin film transistors, sensors, optical memory devices and flat screen devices including televisions