Download Free Seismic Reservoir Characterization Of The Haynesville Shale Book in PDF and EPUB Free Download. You can read online Seismic Reservoir Characterization Of The Haynesville Shale and write the review.

This book is a useful guide for researchers involved in the technological innovation and production of shale gas exploration and development. It offers a thorough understanding of seismic technologies and their application in shale gas exploration and extraction.This book comprehensively and systematically presents the significance of seismic technologies in predicting shale gas sweet spots. It introduces state-of-the-art seismic-based prediction technologies as well as case studies showcasing their implementation in primary shale gas production areas in China. Innovativeness is one of the highlights of this book. Cutting-edge technologies, such as AI applied in identifying shale gas sweet spots, and achieving excellent results in shale gas production are presented.Readers will gain insights into the latest methodologies, models, and real-world examples, equipping them with the necessary tools to navigate the complex landscape of shale gas resources.
As the shale revolution continues in North America, unconventional resource markets are emerging on every continent. In the next eight to ten years, more than 100,000 wells and one- to two-million hydraulic fracturing stages could be executed, resulting in close to one trillion dollars in industry spending. This growth has prompted professionals ex
Provides comprehensive information about the key exploration, development and optimization concepts required for gas shale reservoirs Includes statistics about gas shale resources and countries that have shale gas potential Addresses the challenges that oil and gas industries may confront for gas shale reservoir exploration and development Introduces petrophysical analysis, rock physics, geomechanics and passive seismic methods for gas shale plays Details shale gas environmental issues and challenges, economic consideration for gas shale reservoirs Includes case studies of major producing gas shale formations
Over the past several years, there has been a growing integration of data – geophysical, geological, petrophysical, engineering-related, and production-related – in predicting and determining reservoir properties. As such, geoscientists now must learn the technology, processes, and challenges involved within their specific functions in order to optimize planning for oil field development. Applied Techniques to Integrated Oil and Gas Reservoir Characterization presents challenging questions encountered by geoscientists in their day-to-day work in the exploration and development of oil and gas fields and provides potential solutions from experts. From basin analysis of conventional and unconventional reservoirs, to seismic attributes analysis, NMR for reservoir characterization, amplitude versus offset (AVO), well-to-seismic tie, seismic inversion studies, rock physics, pore pressure prediction, and 4D for reservoir monitoring, the text examines challenges in the industry as well as the techniques used to overcome those challenges. This book includes valuable contributions from global industry experts: Brian Schulte (Schiefer Reservoir Consulting), Dr. Neil W. Craigie (Saudi Aramco), Matthijs van der Molen (Shell International E&P), Dr. Fred W. Schroeder (ExxonMobil, retired), Dr. Tharwat Hassane (Schlumberger & BP, retired), and others. - Presents a thorough understanding of the requirements of various disciplines in characterizing a wide spectrum of reservoirs - Includes real-life problems and challenging questions encountered by geoscientists in their day-to-day work, along with answers from experts working in the field - Provides an integrated approach among different disciplines (geology, geophysics, petrophysics, and petroleum engineering) - Offers advice from industry experts to geoscience students, including career guides and interview tips
Practical Solutions to Integrated Oil and Gas Reservoir Analysis: Geophysical and Geological Perspectives is a well-timed source of information addressing the growing integration of geophysical, geological, reservoir engineering, production, and petrophysical data in predicting and determining reservoir properties. These include reservoir extent and sand development away from the well bore, characterizations of undrilled prospects, and optimization planning for field development. As such, geoscientists must now learn the technology, processes, and challenges involved within their specific functions in order to complete day-to-day activities. A broad collection of real-life problems and challenging questions encountered by geoscientists in the exploration and development of oil and gas fields, the book treats subjects ranging from Basin Analysis, to identifying and mapping structures, stratigraphy, the distribution of fracture, and the identification of pore fluids. Looking at the well-to-seismic tie, time-to-depth conversion, AVO analysis, seismic inversion, rock physics, and pore pressure analysis/prediction, the text examines challenges encountered in these technical areas, and also includes solutions and techniques used to overcome those challenges. Presents a thorough understanding of the contributions and issues faced by the various disciplines that contribute towards characterizing a wide spectrum of reservoirs (Conventional, Shale Oil and Gas, as well as Carbonate reservoirs) Provides a much needed and integrated approach amongst disciplines including geology, geophysics, petrophysics, reservoir and drilling engineering Includes case studies on different reservoir settings from around the world including Western Canadian Sedimentary Basin, Gulf of Guinea, Gulf of Mexico, Milne point field in Alaska, North-Sea, San Jorge Basin, and Bossier and Haynesville Shales, and others to help illustrate key points
A comprehensive overview of the key geologic, geomechanical and engineering principles that govern the development of unconventional oil and gas reservoirs. Covering hydrocarbon-bearing formations, horizontal drilling, reservoir seismology and environmental impacts, this is an invaluable resource for geologists, geophysicists and reservoir engineers.
Brings together widely scattered theoretical and laboratory rock physics relations critical for modelling and interpretation of geophysical data.
An up-to-date overview of global optimization methods used to formulate and interpret geophysical observations, for researchers, graduate students and professionals.