Download Free Seismic Performance Of Stainless And Conventional Steel Energy Dissipation Bars In Precast Segmental Bridge Columns Book in PDF and EPUB Free Download. You can read online Seismic Performance Of Stainless And Conventional Steel Energy Dissipation Bars In Precast Segmental Bridge Columns and write the review.

The use of stainless steel reinforcing bars in seismic applications has recently attracted much attention in the civil engineering community due to its superior material properties, including high corrosion resistance and high specific strength. However, as with all new materials, a number of shortcomings are unavoidable, such as high initial costs, unknown low-cycle fatigue behavior, uncertain ductility properties and unidentified bond-slip behavior between the embedded bar and grouted duct in precast concrete element for use in segmental bridge members. The performance of precast segmental post-tensioned concrete bridge columns in seismic regions has been investigated by many other researchers. Mild steel energy dissipation bars (ED bars) that were continuous across the column segment joints were added into the columns to increase the hysteretic energy dissipation capacity.^In phase Iexperimental study, mechanical properties and low-cycle fatigue behavior of Talley S24100, Talley 316LN, Talley 2205 and Arminox UNS S32304 stainless reinforcing steel, A706 carbon black reinforcing steel, and MMFX II high strength, corrosion resistant reinforcing steel were investigated. Talley S24100 was found to obtain the highest ductility and the best low-cycle fatigue performance among the steels investigated. Therefore, compared to A706, Talley S24100 was considered to be the superior substitute material for ED bars. Succeeding phase II and phase III study on the bond-slip response of stainless steel reinforcing bars in grouted ducts of precast concrete element was then carried out with a focus on the influence of various duct/bar diameter ratios and different embedment lengths.^A seriesof monotonic pull-out and tension cyclic tests were conducted to investigate the constitutive bond-slip relationship between the bar and duct confined grout and their further applications under seismic loadings. Results showed that for A706 and Talley S24100 steels, both the duct/bar diameter ratio and embedment length influenced the bond-slip behavior in the monotonic pull-out tests. A one-dimensional nonlinear bond spring model exhibited a good performance in simulating the test results. In addition to the conventional bond-slip model, an "end-slip model" is also proposed in this study to describe the loaded end slip behavior of a bar anchored in grouted duct with a relatively deep embedment (12,16and 24 db). Each bond-slip and end-slip model has a five segment structure (each segment is linear). Recommended design equations were developed for development lengths for A706 and Talley S24100 reinforcing steels, respectively.^The local ED bar strains at different column top drift levels were investigated.
Bridge Maintenance, Safety, Management, Resilience and Sustainability contains the lectures and papers presented at The Sixth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2012), held in Stresa, Lake Maggiore, Italy, 8-12 July, 2012. This volume consists of a book of extended abstracts (800 pp) Extensive collection of revised expert papers on recent advances in bridge maintenance, safety, management and life-cycle performance, representing a major contribution to the knowledge base of all areas of the field.
Sets out basic theory for the behavior of reinforced concrete structural elements and structures in considerable depth. Emphasizes behavior at the ultimate load, and, in particular, aspects of the seismic design of reinforced concrete structures. Based on American practice, but also examines European practice.
This book assembles, identifies and highlights the most recent developments in Rehabilitation and retrofitting of historical and heritage structures. This is an issue of paramount importance in countries with great built cultural heritage that also suffer from high seismicity, such as the countries of the eastern Mediterranean basin. Heritage structures range from traditional residential constructions to monumental structures, ancient temples, towers, castles, etc. It is generally recognized that these structures present particular difficulties in seismic response calculation through computer simulation due to the complexity of the structural system which is, generally, inhomogeneous, with several contact problems, gaps/joints, nonlinearities and brittleness in material constituents. This book contains selected papers from the ECCOMAS Thematic Conferences on Computational Methods in Structural Dynamics & Earthquake Engineering (COMPDYN) that were held in Corfu, Greece in 2011 and Kos, Greece in 2013. The Conferences brought together the scientific communities of Computational Mechanics, Structural Dynamics and Earthquake Engineering in an effort to facilitate the exchange of ideas in topics of mutual interest and to serve as a platform for establishing links between research groups with complementary activities.
This manual is intended to serve as a reference. It will provide technical information which will enable Manual users to perform the following activities:Describe typical erection practices for girder bridge superstructures and recognize critical construction stagesDiscuss typical practices for evaluating structural stability of girder bridge superstructures during early stages of erection and throughout bridge constructionExplain the basic concepts of stability and why it is important in bridge erection* Explain common techniques for performing advanced stability analysis along with their advantages and limitationsDescribe how differing construction sequences effect superstructure stabilityBe able to select appropriate loads, load combinations, and load factors for use in analyzing superstructure components during constructionBe able to analyze bridge members at various stages of erection* Develop erection plans that are safe and economical, and know what information is required and should be a part of those plansDescribe the differences between local, member and global (system) stability
The costs of inadequate earthquake engineering are huge, especially for reinforced concrete buildings. This book presents the principles of earthquake-resistant structural engineering, and uses the latest tools and techniques to give practical design guidance to address single or multiple seismic performance levels. It presents an elegant, simple and theoretically coherent design framework. Required strength is determined on the basis of an estimated yield displacement and desired limits of system ductility and drift demands. A simple deterministic approach is presented along with its elaboration into a probabilistic treatment that allows for design to limit annual probabilities of failure. The design method allows the seismic force resisting system to be designed on the basis of elastic analysis results, while nonlinear analysis is used for performance verification. Detailing requirements of ACI 318 and Eurocode 8 are presented. Students will benefit from the coverage of seismology, structural dynamics, reinforced concrete, and capacity design approaches, which allows the book to be used as a foundation text in earthquake engineering.
This edition is based on the work of NCHRP project 20-7, task 262 and updates the 2nd (1999) edition -- P. ix.
This book gathers peer-reviewed contributions presented at the 1st International Conference on Structural Engineering and Construction Management (SECON’20), held in Angamaly, Kerala, India, on 14-15 May 2020. The meeting served as a fertile platform for discussion, sharing sound knowledge and introducing novel ideas on issues related to sustainable construction and design for the future. The respective contributions address various aspects of numerical modeling and simulation in structural engineering, structural dynamics and earthquake engineering, advanced analysis and design of foundations, BIM, building energy management, and technical project management. Accordingly, the book offers a valuable, up-to-date tool and essential overview of the subject for scientists and practitioners alike, and will inspire further investigations and research.