Download Free Seismic Noise Attenuation Book in PDF and EPUB Free Download. You can read online Seismic Noise Attenuation and write the review.

This book examines the effects of incoherent noise and how it leads to the misinterpretation of seismic data. It also reviews common noise reduction approaches and their drawbacks, focusing on developments that have occurred in the past decade. The main features of this book include: • Hands-on implementation in MATLAB and/or C • In-depth discussions of both theoretical and practical aspects of the subject • Supplementary, real-world seismic data • Detailed descriptions of structure-enhancing filters. Connecting the theory and practical implementation of noise reduction, the book helps readers fill the gap from equations to code, and from classical filters to the preservation and enhancement of a robust structure. Lastly, it highlights cutting-edge research in the area. As such, it is of interest to researchers in the fields of petroleum engineering, exploration seismology, and geophysics, as well as to practitioners working in the petroleum industry.
This volume attempts to examine the sequence of operations required for the extraction of the flow of messages from a background of random noise and unwanted signals. The analysis will involve the use of frontier integrals, autocorrelation, cross correlation, power spectral studies and convolution or filtering. Attention will be made to the definition of signal and noise and how these may change under different processing methods.
This book examines the effects of incoherent noise and how it leads to the misinterpretation of seismic data. It also reviews common noise reduction approaches and their drawbacks, focusing on developments that have occurred in the past decade. The main features of this book include: Hands-on implementation in MATLAB and/or C In-depth discussions of both theoretical and practical aspects of the subject Supplementary, real-world seismic data Detailed descriptions of structure-enhancing filters. Connecting the theory and practical implementation of noise reduction, the book helps readers fill the gap from equations to code, and from classical filters to the preservation and enhancement of a robust structure. Lastly, it highlights cutting-edge research in the area. As such, it is of interest to researchers in the fields of petroleum engineering, exploration seismology, and geophysics, as well as to practitioners working in the petroleum industry.
The past few decades have witnessed the growth of the Earth Sciences in the pursuit of knowledge and understanding of the planet that we live on. This development addresses the challenging endeavor to enrich human lives with the bounties of Nature as well as to preserve the planet for the generations to come. Solid Earth Geophysics aspires to define and quantify the internal structure and processes of the Earth in terms of the principles of physics and forms the intrinsic framework, which other allied disciplines utilize for more specific investigations. The first edition of the Encyclopedia of Solid Earth Geophysics was published in 1989 by Van Nostrand Reinhold publishing company. More than two decades later, this new volume, edited by Prof. Harsh K. Gupta, represents a thoroughly revised and expanded reference work. It brings together more than 200 articles covering established and new concepts of Geophysics across the various sub-disciplines such as Gravity, Geodesy, Geomagnetism, Seismology, Seismics, Deep Earth Processes, Plate Tectonics, Thermal Domains, Computational Methods, etc. in a systematic and consistent format and standard. It is an authoritative and current reference source with extraordinary width of scope. It draws its unique strength from the expert contributions of editors and authors across the globe. It is designed to serve as a valuable and cherished source of information for current and future generations of professionals.
Expanding the author's original work on processing to include inversion and interpretation, and including developments in all aspects of conventional processing, this two-volume set is a comprehensive and complete coverage of the modern trends in the seismic industry - from time to depth, from 3D to 4D, from 4D to 4C, and from isotropy to anisotropy.
A comprehensive overview of seismic ambient noise, covering observations, physical origins, modelling, processing methods and applications in imaging and monitoring.
In this volume, the opening chapter has papers of historical interest, and the volume ends with a speculative chapter about multiples used as signal. In between are seven chapters that cover unique aspects of multiple-attenuation technology, including deconvolution, moveout discrimination, data-driven prediction, practical issues, tutorials and case histories.
This short book is for students, professors and professionals interested in signal processing of seismic data using MATLAB(TM). The step-by-step demo of the full reflection seismic data processing workflow using a complete real seismic data set places itself as a very useful feature of the book. This is especially true when students are performing their projects, and when professors and researchers are testing their new developed algorithms in MATLAB(TM) for processing seismic data. The book provides the basic seismic and signal processing theory required for each chapter and shows how to process the data from raw field records to a final image of the subsurface all using MATLAB(TM). Table of Contents: Seismic Data Processing: A Quick Overview / Examination of A Real Seismic Data Set / Quality Control of Real Seismic Data / Seismic Noise Attenuation / Seismic Deconvolution / Carrying the Processing Forward / Static Corrections / Seismic Migration / Concluding Remarks