Download Free Seismic Design Of Precast Prestressed Concrete Structures Book in PDF and EPUB Free Download. You can read online Seismic Design Of Precast Prestressed Concrete Structures and write the review.

The aim of this state-of-art report is to present current practices for use of precast and prestressed concrete in countries in seismic regions, to recommend good practice, and to discuss current developments. The report has been drafted by 30 contributors from nine different countries. This state-of-art report covers: state of the practice in various countries; advantages and disadvantages of incorporating precast reinforced and prestressed concrete in construction; lessons learned from previous earthquakes; construction concepts; design approaches; primary lateral load resisting systems (precast and prestressed concrete frame systems and structural walls including dual systems) diaphragms of precast and prestressed concrete floor units; modelling and analytical methods; gravity load resisting systems; foundations; and miscellaneous elements (shells, folded plates, stairs and architectural cladding panels). Design equations are reported where necessary, but the emphasis is on principles. Ordinary cast-in-place reinforced concrete is not considered in this report. This fib state-of-the-art report is intended to assist designers and constructors to provide safe and economical applications of structural precast concrete and at the same time to allow innovation in design and construction to continue. This Bulletin N° 27 was approved as an fib state-of-art report in autumn 2002 byfib Commission 7, Seismic design.
This document has a broad scope and is not focussed on design issues. Precast construction under seismic conditions is treated as a whole. The main principles of seismic design of different structural systems, their behavior and their construction techniques are presented through rules, construction steps and sequences, procedures, and details that should lead to precast structures built in seismic areas complying with the fundamental performance requirements of collapse prevention and life safety in major earthquakes and limited damage in more frequent earthquakes. The content of this document is largely limited to conventional precast construction and, although some information is provided on the well-known “PRESSS technology” (jointed ductile dry connections), this latter solution is not treated in detail in this document. The general overview, contained in this document, of alternative structural systems and connection solutions available to achieve desired performance levels, intends to provide engineers, architects, clients, and end-users (in general) with a better appreciation of the wide range of applications that modern precast concrete technology can have in various types of construction from industrial to commercial as well as residential. Lastly, the emphasis on practical aspects, from conceptual design to connection detailing, aims to help engineers to move away from the habit of blindly following prescriptive codes in their design, but instead go back to basic principles, in order to achieve a more robust understanding, and thus control, of the seismic behaviour of the structural system as a whole, as well as of its components and individual connections.
This guide provides information for detailing precast concrete structures that should meet building code requirements for all seismic design categories by emulating cast-in-place reinforced concrete design. This guide also explains how emulative precast concrete structures can address the provisions of ACI 318-08, including those of Chapter 21, if special attention is directed to detailing the joints and splices between precast components.
* Presents the basics of seismic-resistant design of concrete structures. * Provides a major focus on the seismic design of precast bracing systems.
This is an essential reference for practicing civil and structural engineers and architects involved with projects in earthquake regions. Undergraduate and advanced students of earthquake engineering will welcome the comprehensive and approachable coverage.
The Sixth Edition provides easy-to-follow design procedures, newly formatted numerical examples, and both new and updated design aids using ASCE 7-02, ACI 318-02, the third edition of the AISC Steel Manual and IBC 2003. It also includes new and updated information on 15 foot wide double tee load tables, seismic design, torsion and shear design, load and resistance factors, headed stud connection design, and fire resistance.