Download Free Seismic Collapse Assessment Of Self Centering Steel Moment Resisting Frame Systems With Web Friction Devices Book in PDF and EPUB Free Download. You can read online Seismic Collapse Assessment Of Self Centering Steel Moment Resisting Frame Systems With Web Friction Devices and write the review.

Structures are built where active faults may be in close proximity. The probability of collapse of a 4-story low-rise building with perimeter SC-MRFs subjected to near-field ground motions was studied and compared to the results for far-field ground motions. IDA are performed using an ensemble of 56 near-field ground motions. The results show that the SC-MRF built close to active faults has less collapse resistance in contrast to the one built in seismic zones away from active faults. The structure has larger spectral acceleration for near-field ground motions than far-field ground motions at the fundamental period, leading to excessive inelastic deformations that cause structure collapse earlier. The results obtained, however, show that an acceptable margin against collapse is still achieved and therefore indicate a potential for an SC-MRF to be used in seismic zones with active near-field faults.
This book gathers peer-reviewed contributions presented at the 3rd National Conference on Structural Engineering and Construction Management (SECON’19), held in Angamaly, Kerala, India, on 15-16 May 2019. The meeting served as a fertile platform for discussion, sharing sound knowledge and introducing novel ideas on issues related to sustainable construction and design for the future. The respective contributions address various aspects of numerical modeling and simulation in structural engineering, structural dynamics and earthquake engineering, advanced analysis and design of foundations, BIM, building energy management, and technical project management. Accordingly, the book offers a valuable, up-to-date tool and essential overview of the subject for scientists and practitioners alike, and will inspire further investigations and research.
Behaviour of Steel Structures in Seismic Areas comprises the latest progress in both theoretical and experimental research on the behaviour of steel structures in seismic areas. The book presents the most recent trends in the field of steel structures in seismic areas, with particular reference to the utilisation of multi-level performance bas
This books analyzes different approaches to modeling earthquake-induced structural pounding and shows the results of the studies on collisions between buildings and between bridge segments during ground motions. Aspects related to the mitigation of pounding effects as well as the design of structures prone to pounding are also discussed. Earthquake-induced structural pounding between insufficiently separated buildings, and between bridge segments, has been repeatedly observed during ground motions. The reports after earthquakes indicate that it may result in limited local damage in the case of moderate seismic events, or in considerable destruction or even the collapse of colliding structures during severe ground motions. Pounding in buildings is usually caused by the differences in dynamic properties between structures, which make them vibrate out-of-phase under seismic excitation. In contrast, in the case of longer bridge structures, it is more often the seismic wave propagation effect that induces collisions between superstructure segments during earthquakes.
Structural Timber Design to Eurocode 5 is a comprehensive book which provides practising engineers and specialist contractors with detailed information and in-depth guidance on the design of timber structures based on the common rules and rules for buildings in Eurocode 5 - Part 1-1. It will also be of interest to undergraduate and postgraduate students of civil and structural engineering. The book provides a step-by-step approach to the design of all of the most commonly used timber elements and connections using solid timber, glued laminated timber or wood based structural products. It features numerous detailed worked examples, and incorporates the requirements of the UK National Annex. It covers the strength and stiffness properties of timber and its reconstituted and engineered products; the key requirements of Eurocode 0, Eurocode 1 and Eurocode 5 - Part 1-1; the design of beams and columns of solid timber, glued laminated, composite and thin-webbed sections; the lateral stability requirements of timber structures; and the design of mechanical connections subjected to lateral and/or axial forces as well as rigid and semi-rigid connections subjected to a moment. The Authors Jack Porteous is a consulting engineer specialising in timber engineering. He is a Chartered Engineer, Fellow of the Institution of Civil Engineers and Member of the Institution of Structural Engineers. He is a visiting scholar and lecturer in timber engineering at Napier University. Abdy Kermani is the Professor of Timber Engineering and R&D consultant at Napier University. He is a Chartered Engineer, Member of the Institution of Structural Engineers and Fellow of the Institute of Wood Science with over 20 years' experience in civil and structural engineering research, teaching and practice. The authors have led several research and development programmes on the structural use of timber and its reconstituted products. Their research work in timber engineering is internationally recognised and published widely. Also of Interest Timber Designers' Manual Third Edition E.C. Ozelton & J.A. Baird Paperback 978 14051 4671 5 Cover design by Garth Stewart
The first edition of this monograph, presenting accurate and efficient simulations of seismic damage to buildings and cities, has received significant attention from the research community. To keep abreast of the rapid development in recent years, our latest breakthrough achievements have been added to this new edition, including novel resilient structural components, secondary disaster simulations, emergency responses and resilient recovery of communities after earthquake. This edition comprehensively covers a range of numerical modeling approaches, higher performance computation methods, and high fidelity visualization techniques for earthquake disaster simulation of tall buildings and urban areas. It also demonstrates successful engineering applications of the proposed methodologies to typical landmark projects (e.g., Shanghai Tower and CITIC Tower, two of the world's tallest buildings; Beijing CBD and San Francisco Bay Area). Reported in this edition are a collection of about 60 high impact journal publications which have already received high citations.
This book provides senior undergraduate students, master students and structural engineers who do not have a background in the field with core knowledge of structural earthquake engineering that will be invaluable in their professional lives. The basics of seismotectonics, including the causes, magnitude, and intensity of earthquakes, are first explained. Then the book introduces basic elements of seismic hazard analysis and presents the concept of a seismic hazard map for use in seismic design. Subsequent chapters cover key aspects of the response analysis of simple systems and building structures to earthquake ground motions, design spectrum, the adoption of seismic analysis procedures in seismic design codes, seismic design principles and seismic design of reinforced concrete structures. Helpful worked examples on seismic analysis of linear, nonlinear and base isolated buildings, earthquake-resistant design of frame and frame-shear wall systems are included, most of which can be solved using a hand calculator.
This report, FEMA-350 - Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings has been developed by the SAC Joint Venture under contract to the Federal Emergency Management Agency (FEMA) to provide organizations engaged in the development of consensus design standards and building code provisions with recommended criteria for the design and construction of new buildings incorporating moment-resisting steel frame construction to resist the effects of earthquakes. It is one of a series of companion publications addressing the issue of the seismic performance of steel moment-frame buildings. The set of companion publications includes: FEMA-350 - Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings. This publication provides recommended criteria, supplemental to FEMA-302 - 1997 NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, for the design and construction of steel moment-frame buildings and provides alternative performance-based design criteria. FEMA-351 - Recommended Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment-Frame Buildings. This publication provides recommended methods to evaluate the probable performance of existing steel moment-frame buildings in future earthquakes and to retrofit these buildings for improved performance. FEMA-352 - Recommended Postearthquake Evaluation and Repair Criteria for Welded Steel Moment-Frame Buildings. This publication provides recommendations for performing postearthquake inspections to detect damage in steel moment-frame buildings following an earthquake, evaluating the damaged buildings to determine their safety in the postearthquake environment, and repairing damaged buildings. FEMA-353 - Recommended Specifications and Quality Assurance Guidelines for Steel Moment-Frame Construction for Seismic Applications. This publication provides recommended specifications for the fabrication and erection of steel moment frames for seismic applications. The recommended design criteria contained in the other companion documents are based on the material and workmanship standards contained in this document, which also includes discussion of the basis for the quality control and quality assurance criteria contained in the recommended specifications. The information contained in these recommended design criteria, hereinafter referred to as Recommended Criteria, is presented in the form of specific design and performance evaluation procedures together with supporting commentary explaining part of the basis for these recommendations.
This book presents the select proceedings of the Virtual Conference on Disaster Risk Reduction (VCDRR 2021). It emphasizes on the role of civil engineering for a disaster-resilient society. It presents latest research in geohazards and their mitigation. Various topics covered in this book are earthquake hazard, seismic response of structures and earthquake risk. This book is a comprehensive volume on disaster risk reduction (DRR) and its management for a sustainable built environment. This book will be useful for the students, researchers, policy makers and professionals working in the area of civil engineering and earthquake engineering.