Download Free Second Generation Hts Conductors Book in PDF and EPUB Free Download. You can read online Second Generation Hts Conductors and write the review.

The third method invented is called the Rolling-assisted-biaxially-textured-substrates (RABiTS). The book is divided into four sections. The first section discusses the three methods to fabricate biaxially textured substrates, upon which, epitaxial YBCO or other HTS materials can be deposited to realize a single-crystal-like HTS wire. The second section includes chapters on various methods of HTS deposition such as pulsed laser ablation (PLD), thermal co-evaporation, sputtering, pulsed electron beam deposition, ex-situ BaF2 by co-evaporation flowed by annealing, chemical solution based ex-situ processes, jet vapor deposition, metal organic chemical vapor deposition (MOCVD), and liquid phase epitaxy (LPE). The third section includes detailed chapters on other HTS materials such as the various Tl-based and Hg-based conductors. These Second-Generation HTS conductors, also referred to as "Coated conductors" represent one of the most exciting developments in HTS technology.
Second-Generation High-Temperature Superconducting Coils and Their Applications for Energy Storage addresses the practical electric power applications of high-temperature superconductors. It validates the concept of a prototype energy storage system using newly available 2G HTS conductors by investigating the process of building a complete system from the initial design to the final experiment. It begins with a clear introduction of the related background and then presents a comprehensive design of a superconducting energy storage system that can store maximum energy using a limited length of superconductors. The author has created a modeling environment for analysis of the system and also presents experimental results that are highly consistent with his theoretical calculations.
Second generation (2G) technologies to fabricate high-performance superconducting wires developed at the Oak Ridge National Laboratory (ORNL) were transferred to American Superconductor via this CRADA. In addition, co-development of technologies for over a decade was done to enable fabrication of commercial high-temperature superconducting (HTS) wires with high performance. The massive success of this CRADA has allowed American Superconductor Corporation (AMSC) to become a global leader in the fabrication of HTS wire and the technology is fully based on the Rolling Assisted Biaxially Textured Substrates (RABiTS) technology invented and developed at ORNL.
This thesis introduces a systematic study on Second Generation (2G) High Temperature Superconductors (HTS), covering a novel design of an advanced medical imaging device using HTS, and an in-depth investigation on the losses of HTS. The text covers the design and simulation of a superconducting Lorentz Force Electrical Impedance Tomography. This is potentially a significant medical device that is more efficient and compact than an MRI, and is capable of detecting early cancer, as well as other pathologies such stroke and internal haemorrhages. It also presents the information regarding the fundamental physics of superconductivity, concentrating on the AC losses in superconducting coils and tapes. Overall, the thesis signifies an important contribution to the investigation of High Temperature Superconductors. This thesis will be beneficial to the development of advanced superconducting applications in healthcare as well as more broadly in electrical and energy systems.
During its fifteen years of life, this CRADA has evolved in both scope and purpose. Early efforts to develop high performance bismuth-based powder-in-tube first generation high temperature superconductors (HTS) have shifted toward efforts to understand and develop technologies required to fabricate second generation HTS coated conductors. Since the two original longstanding principal investigators from UT-Battelle and Oxford Superconducting Technology (OST) are not presently employed by their respective organizations, this final report shall focus primarily on results of the more recent past involving research and development of the deformation and annealing processes required to fabricate metallic substrates for RABiTS-based second generation coated conductors. The specific objectives of this recent work involve the development of OST Ni/3%W tape for HTS coated conductors and include: (a) to improve uniformity of cube texture through control of deformation and annealing parameters, (b) to minimize delamination and other buffer deposition problems through understanding and control of key parameters related to the metal substrate, (c) to ensure that the textured metal substrate allows well textured buffers with no delamination, and (d) to prepared a final report.
Fermilab is working on the development of high field magnet systems for ionization cooling of muon beams. The use of high temperature superconducting (HTS) materials is being considered for these magnets using Helium refrigeration. Critical current (I{sub c}) measurements of HTS conductors were performed at FNAL and at NIMS up to 28 T under magnetic fields at zero to 90 degree with respect to the sample face. A description of the test setups and results on a BSCCO-2223 tape and second generation (2G) coated conductors are presented.