Download Free Searches For Third Generation Squark Production In Fully Hadronic Final States In Proton Proton Collisions At Arrow Book in PDF and EPUB Free Download. You can read online Searches For Third Generation Squark Production In Fully Hadronic Final States In Proton Proton Collisions At Arrow and write the review.

Searches for third-generation squarks in fully hadronic final states are presented using data samples corresponding to integrated luminosities of 19.4 or 19.7 fb−1, collected at a centre-of-mass energy of 8 TeV with the CMS detector at the LHC. Three mutually exclusive searches are presented, each optimized for a different decay topology. They include a multijet search requiring one fully reconstructed top quark, a dijet search requiring one or two jets originating from b quarks, and a monojet search. No excesses above the standard model expectations are seen, and limits are set on top and bottom squark production in the context of simplified models of supersymmetry.
We searched for third-generation squarks in fully hadronic final states and presented them using data samples corresponding to integrated luminosities of 19.4 or 19.7 fb-1, collected at a centre-of-mass energy of 8 TeV with the CMS detector at the LHC. Three mutually exclusive searches are presented, each optimized for a different decay topology. They include a multijet search requiring one fully reconstructed top quark, a dijet search requiring one or two jets originating from b quarks, and a monojet search. Furthermore, no excesses above the standard model expectations are seen, and limits are set on top and bottom squark production in the context of simplified models of supersymmetry.
A search for pair production of third-generation scalar leptoquarks and supersymmetric top quark partners, top squarks, in final states involving tau leptons and bottom quarks is presented. The search uses events from a data sample of proton-proton collisions corresponding to an integrated luminosity of 19.7 fb-1, collected with the CMS detector at the LHC with [arrow]" = 8 TeV. The number of observed events is found to be in agreement with the expected standard model background. Third-generation scalar leptoquarks with masses below 740 GeV are excluded at 95% confidence level, assuming a 100% branching fraction for the leptoquark decay to a tau lepton and a bottom quark. In addition, this mass limit applies directly to top squarks decaying via an R-parity violating coupling [lambda]'333. The search also considers a similar signature from top squarks undergoing a chargino-mediated decay involving the R-parity violating coupling [lambda]'3jk. Each top squark decays to a tau lepton, a bottom quark, and two light quarks. Top squarks in this model with masses below 580 GeV are excluded at 95% confidence level. The constraint on the leptoquark mass is the most stringent to date, and this is the first search for top squarks decaying via [lambda]'3jk.
Three searches for third generation squarks using proton-proton collision data at a center-of-mass energy of 13 TeV recorded by the CMS experiment at the LHC are presented. The data corre- spond to an integrated luminosity of 12.9 fb-1. The analyses define exclusive search regions and estimate contributions from standard model processes to these regions by using control samples in the data. No significant deviation from the standard model expectation is observed in the data. The results are interpreted in simplified SUSY models of direct and gluino-mediated top squark production. Depending on the model, top squark masses up to 910 GeV and gluino masses up to 1780 GeV are excluded.
Searches are presented for direct production of top or bottom squark pairs in proton-proton collisions at the CERN LHC. Two searches, based on complementary techniques, are performed in all-jet final states that are characterized by a significant imbalance in transverse momentum. An additional search requires the presence of a charged lepton isolated from other activity in the event. The data were collected in 2015 at a centre-of-mass energy of 13 TeV with the CMS detector and correspond to an integrated luminosity of 2.3 inverse femtobarns. No statistically significant excess of events is found beyond the expected contribution from standard model processes. Exclusion limits are set in the context of simplified models of top or bottom squark pair production. Models with top and bottom squark masses up to 830 and 890 GeV, respectively, are probed for light neutralinos. For models with top squark masses of 675 GeV, neutralino masses up to 260 GeV are excluded at 95% confidence level.
Abstract: Supersymmetry poses one of the best motivated theories for particle physics beyond the Standard Model. It can provide a dark matter candidate and enable grand unification. The supersymmetric partner of the top quark, the top squark, can provide a cancellation of diverging radiative corrections to the Higgs-boson mass and thereby avoid the hierarchy problem of the Standard Model. In this thesis, a search for top squarks in final states with jets and missing transverse momentum is presented. Proton-proton collisions at a centre-of-mass energy of √s = 13 TeV, produced by the Large Hadron Collider, were recorded by the ATLAS detector. The analysed dataset corresponds to an integrated luminosity of 36.1 fb-1. No significant excess above the Standard Model background was observed. The analysis results are interpreted as exclusion limits on the top-squark mass and the neutralino mass in various scenarios that address specific aspects of the supersymmetry
Here, results are reported from a search for the pair production of top squarks, the supersymmetric partners of top quarks, in final states with jets and missing transverse momentum. The data sample used in this search was collected by the CMS detector and corresponds to an integrated luminosity of 18.9 fb–1 of proton-proton collisions at a centre-of-mass energy of 8 TeV produced by the LHC. The search features novel background suppression and prediction methods, including a dedicated top quark pair reconstruction algorithm. The data are found to be in agreement with the predicted backgrounds. Exclusion limits are set in simplified supersymmetry models with the top squark decaying to jets and an undetected neutralino, either via a top quark or through a bottom quark and chargino. Models with the top squark decaying via a top quark are excluded for top squark masses up to 755 GeV in the case of neutralino masses below 200 GeV. For decays via a chargino, top squark masses up to 620 GeV are excluded, depending on the masses of the chargino and neutralino.
Abstract: A search for the supersymmetric partners of quarks and gluons (squarks and gluinos) in final states containing hadronic jets and missing transverse momentum, but no electrons or muons, is presented. The data used in this search were recorded in 2015 and 2016 by the ATLAS experiment in √s=13 TeV proton-proton collisions at the Large Hadron Collider, corresponding to an integrated luminosity of 36.1 fb−1. The results are interpreted in the context of various models where squarks and gluinos are pair produced and the neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 2.03 TeV for a simplified model incorporating only a gluino and the lightest neutralino, assuming the lightest neutralino is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, squark masses below 1.55 TeV are excluded if the lightest neutralino is massless. These limits substantially extend the region of supersymmetric parameter space previously excluded by searches with the ATLAS detector
Abstract: A search for squarks and gluinos in final states containing hadronic jets, missing transverse momentum but no electrons or muons is presented. The data were recorded in 2015 by the ATLAS experiment in s√=13 TeV proton-proton collisions at the Large Hadron Collider. No excess above the Standard Model background expectation was observed in 3.2 fb−1 of analyzed data. Results are interpreted within simplified models that assume R-parity is conserved and the neutralino is the lightest supersymmetric particle. An exclusion limit at the 95 % confidence level on the mass of the gluino is set at 1.51 TeV for a simplified model incorporating only a gluino octet and the lightest neutralino, assuming the lightest neutralino is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, squark masses below 1.03 TeV are excluded for a massless lightest neutralino. These limits substantially extend the region of supersymmetric parameter space excluded by previous measurements with the ATLAS detector