Download Free Searches For Long Lived Particles At The Tevatron Collider Book in PDF and EPUB Free Download. You can read online Searches For Long Lived Particles At The Tevatron Collider and write the review.

It has been more than a decade since new elementary particles were discovered. To recognize the findings of scientists in this still fairly new but exciting and promising area of research, the Trieste Workshop was organised in May 1992 to discuss the status and explore the prospects for the discovery of new elementary particles using the full variety of search methods which are, or will be available to the physicist. All papers in this collection of proceedings are reviews written by experts in their own area of speciality. Many review papers based on experimental findings are also included. To present a clearer and more coherent overview, a theoretical overview talk as well as a summary talk have been included to serve as a link between the various areas that were discussed in the papers. This collection of papers is perhaps the first authoritative source ever published on the search for new elementary particles.
Describes the technology and engineering of the Large Hadron collider (LHC), one of the greatest scientific marvels of this young 21st century. This book traces the feat of its construction, written by the head scientists involved, placed into the context of the scientific goals and principles.
This thesis presents a search for long-lived particles decaying into displaced electrons and/or muons with large impact parameters. This signature provides unique sensitivity to the production of theoretical lepton-partners, sleptons. These particles are a feature of supersymmetric theories, which seek to address unanswered questions in nature. The signature searched for in this thesis is difficult to identify, and in fact, this is the first time it has been probed at the Large Hadron Collider (LHC). It covers a long-standing gap in coverage of possible new physics signatures. This thesis describes the special reconstruction and identification algorithms used to select leptons with large impact parameters and the details of the background estimation. The results are consistent with background, so limits on slepton masses and lifetimes in this model are calculated at 95% CL, drastically improving on the previous best limits from the Large Electron Positron Collider (LEP).
An insider's history of the world's largest particle accelerator, the Large Hadron Collider: why it was built, how it works, and the importance of what it has revealed. Since 2008 scientists have conducted experiments in a hyperenergized, 17-mile supercollider beneath the border of France and Switzerland. The Large Hadron Collider (or what scientists call "the LHC") is one of the wonders of the modern world—a highly sophisticated scientific instrument designed to re-create in miniature the conditions of the universe as they existed in the microseconds following the big bang. Among many notable LHC discoveries, one led to the 2013 Nobel Prize in Physics for revealing evidence of the existence of the Higgs boson, the so-called God particle. Picking up where he left off in The Quantum Frontier, physicist Don Lincoln shares an insider's account of the LHC's operational history and gives readers everything they need to become well informed on this marvel of technology. Writing about the LHC's early days, Lincoln offers keen insight into an accident that derailed the operation nine days after the collider's 2008 debut. A faulty solder joint started a chain reaction that caused a massive explosion, damaged 50 superconducting magnets, and vaporized large sections of the conductor. The crippled LHC lay dormant for over a year, while technical teams repaired the damage. Lincoln devotes an entire chapter to the Higgs boson and Higgs field, using several extended analogies to help explain the importance of these concepts to particle physics. In the final chapter, he describes what the discovery of the Higgs boson tells us about our current understanding of basic physics and how the discovery now keeps scientists awake over a nagging inconsistency in their favorite theory. As accessible as it is fascinating, The Large Hadron Collider reveals the inner workings of this masterful achievement of technology, along with the mind-blowing discoveries that will keep it at the center of the scientific frontier for the foreseeable future.
Since the 1980s the cross-disciplinary, multidimensional field of links between cosmology and particle physics has been widely recognised by theorists, studying cosmology, particle and nuclear physics, gravity, as well as by astrophysicists, astronomers, space physicists, experimental particle and nuclear physicists, mathematicians and engineers.The relationship between cosmology and particle physics is now one of the important topics of discussion at any scientific meeting both on astrophysics and high energy physics.Cosmoparticle physics is the result of the mutual relationship between cosmology and particle physics in their search for physical mechanisms of inflation, baryosynthesis, nonbaryonic dark matter, and for fundamental unity of the natural forces underlying them. The set of nontrivial links between cosmological consequences of particle models and the astrophysical data on matter and radiation in the modern universe maintains cosmoarcheology, testing self-consistently particular predictions of particle models on the base of cosmological scenarios, following from them. Complex analysis of all the indirect cosmological, astrophysical and microphysical phenomena makes cosmoparticle physics the science of the world and renders quantitatively definite the correspondence between its micro- and macroscopic structure.This book outlines the principal ideas of the modern particle theory and cosmology, their mutual relationship and the nontrivial correspondence of their physical and astrophysical effects.
The Large Hadron Collider (LHC), located at CERN, Geneva, Switzerland, is the world's largest and highest energy and highest intensity particle accelerator. Here is a timely book with several perspectives on the hoped-for discoveries from the LHC.This book provides an overview on the techniques that will be crucial for finding new physics at the LHC, as well as perspectives on the importance and implications of the discoveries. Among the accomplished contributors to this book are leaders and visionaries in the field of particle physics beyond the Standard Model, including two Nobel Laureates (Steven Weinberg and Frank Wilczek), and presumably some future Nobel Laureates, plus top younger theorists and experimenters. With its blend of popular and technical contents, the book will have wide appeal, not only to physical scientists but also to those in related fields.
Understanding the origins of the Universe and how it works and evolves is the present mission of a large community of physicists. It calls for a large scale vision, involving general relativity, astrophysics, and cosmology. Theoretical physics is presently at an important moment in its history. As predicted by Einstein, gravitational waves have been experimentally proven to exist. With the discovery of the Higgs boson, the set of interactions and elementary particles that is called the "standard model" (SM), is complete. Yet the Higgs boson itself, and how it breaks the electroweak symmetry, remains a fascinating subject requiring further studies and verification. Furthermore, several experimental facts are not accounted for by the SM: (i) the baryon asymmetry of the Universe, (ii) the nature and origin of dark matter, and (iii) the origin of neutrino masses; these have no unique, if any, explanation in the SM and yet will require answers from particle physics. We need to explore further both SM and its extensions. This is a subject of papers included in this book, which gives representation to the topics discussed during the Matter to the Deepest conference in 2019 in Poland (http://indico.if.us.edu.pl/event/5).
This concise primer reviews the latest developments in the field of jets. Jets are collinear sprays of hadrons produced in very high-energy collisions, e.g. at the LHC or at a future hadron collider. They are essential to and ubiquitous in experimental analyses, making their study crucial. At present LHC energies and beyond, massive particles around the electroweak scale are frequently produced with transverse momenta that are much larger than their mass, i.e., boosted. The decay products of such boosted massive objects tend to occupy only a relatively small and confined area of the detector and are observed as a single jet. Jets hence arise from many different sources and it is important to be able to distinguish the rare events with boosted resonances from the large backgrounds originating from Quantum Chromodynamics (QCD). This requires familiarity with the internal properties of jets, such as their different radiation patterns, a field broadly known as jet substructure. This set of notes begins by providing a phenomenological motivation, explaining why the study of jets and their substructure is of particular importance for the current and future program of the LHC, followed by a brief but insightful introduction to QCD and to hadron-collider phenomenology. The next section introduces jets as complex objects constructed from a sequential recombination algorithm. In this context some experimental aspects are also reviewed. Since jet substructure calculations are multi-scale problems that call for all-order treatments (resummations), the bases of such calculations are discussed for simple jet quantities. With these QCD and jet physics ingredients in hand, readers can then dig into jet substructure itself. Accordingly, these notes first highlight the main concepts behind substructure techniques and introduce a list of the main jet substructure tools that have been used over the past decade. Analytic calculations are then provided for several families of tools, the goal being to identify their key characteristics. In closing, the book provides an overview of LHC searches and measurements where jet substructure techniques are used, reviews the main take-home messages, and outlines future perspectives.
Supersymmetry is at an exciting stage of development. It extends the Standard Model of particle physics into a more powerful theory that both explains more and allows more questions to be addressed. Most important, it opens a window for studying and testing fundamental theories at the Planck scale. Experimentally we are finally entering the intensity and energy regions where superpartners are likely to be detected, and then studied. There has been progress in understanding the remarkable physics implications of supersymmetry, including the derivation of the Higgs mechanism, the unification of the Standard Model forces, cosmological connections such as a candidate for the cold dark matter of the universe and the scalar fields that drive inflation and their potential, the relationship to Planck scale theories, and more.While there are a number of reviews and books where the mathematical structure and uses of supersymmetry can be learned, there are few where the particle physics is the main focus. This book fills that gap. It begins with an excellent pedagogical introduction to the physics and methods and formalism of supersymmetry, by S Martin, which is accessible to anyone with a basic knowledge of the Standard Model of particle physics. Next is an overview of open questions by K Dienes and C Kolda, followed by chapters on topics ranging from how to detect superpartners to connections with Planck scale theories, by leading experts.This invaluable book will allow any interested physicist to understand the coming experimental and theoretical progress in supersymmetry, and will also help students and workers to quickly learn new aspects of supersymmetry they want to pursue.