Download Free Search For Squarks And Gluinos With Two Same Sign Or Three Leptons Final States Using 13 Tev Proton Proton Collision Data With The Atlas Detector Book in PDF and EPUB Free Download. You can read online Search For Squarks And Gluinos With Two Same Sign Or Three Leptons Final States Using 13 Tev Proton Proton Collision Data With The Atlas Detector and write the review.

This thesis represents one of the most comprehensive and in-depth studies of the use of Lorentz-boosted hadronic final state systems in the search for signals of Supersymmetry conducted to date at the Large Hadron Collider. A thorough assessment is performed of the observables that provide enhanced sensitivity to new physics signals otherwise hidden under an enormous background of top quark pairs produced by Standard Model processes. This is complemented by an ingenious analysis optimization procedure that allowed for extending the reach of this analysis by hundreds of GeV in mass of these hypothetical new particles. Lastly, the combination of both deep, thoughtful physics analysis with the development of high-speed electronics for identifying and selecting these same objects is not only unique, but also revolutionary. The Global Feature Extraction system that the author played a critical role in bringing to fruition represents the first dedicated hardware device for selecting these Lorentz-boosted hadronic systems in real-time using state-of-the-art processing chips and embedded systems.
This thesis discusses searches for electroweakly produced supersymmetric partners of the gauge and the Higgs bosons (gauginos and higgsinos) decaying to multiple leptons, using pp collisions at sqrt(s) = 13 TeV. The thesis presents an in-depth study of multiple searches, as well as the first 13 TeV cross section measurement for the dominant background in these searches, WZ production. Two searches were performed using 36.1/fb of data: the gaugino search, which makes use of a novel kinematic variable, and the higgsino search, which produced the first higgsino limits at the LHC. A search using 139/fb of data makes use of a new technique developed in this thesis to cross check an excess of data above the background expectation in a search using a Recursive Jigsaw Reconstruction technique. None of the searches showed a significant excess of data, and limits were expanded with respect to previous results. These searches will benefit from the addition of luminosity during HL-LHC; however, the current detector will not be able to withstand the increase in radiation. Electronics for the detector upgrade are tested and irradiated to ensure their performance.
After an extensive overview of the Standard Model and of the theory and phenomenology of Supersymmetry, this book describes the recent development of the ATLAS Particle Flow algorithm, a hadronic reconstruction technique aiming at enhancing the sensitivity of the experiment to new physics through the combination of the information from different ATLAS sub-detectors. The first ever ATLAS strong SUSY search exploiting this technique is also described, reporting the results and exclusion limits obtained using the complete proton-proton collision dataset recorded by the ATLAS experiment during the second Run of the Large Hadron Collider (LHC).
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
This book reports a search for theoretically natural supersymmetry (SUSY) at the Large Hadron Collider (LHC). The data collected with the ATLAS detector in 2012 corresponding to 20 /fb of an integrated luminosity have been analyzed for stop pair production in proton–proton collisions at a center-of-mass energy of 8 TeV at the Large Hadron Collider (LHC) in the scenario of the higgsino-like neutralino. The author focuses on stop decaying into a bottom quark and chargino. In the scenario of the higgsino-like neutralino, the mass difference between charginos and neutralinos (Δm) is expected to be small, and observable final-state particles are likely to have low-momentum (soft). The author develops a dedicated analysis with a soft lepton as a probe of particles from chargino decay, which suppresses the large amount of backgrounds. As a result of the analysis, no significant SUSY signal is observed. The 95% confidence-level exclusion limits are set to masses of stop and neutralino assuming Δm = 20 GeV. The region with ΔM (the mass difference between stop and neutralino) 70 GeV is excluded for the first time at stop mass of less than 210 GeV. The author also excludes the signals with ΔM 120 GeV up to 600 GeV of stop mass with neutralino mass of less than 280 GeV. The author clearly shows very few remaining parameter spaces for light stop (e.g., topology of stop decay is extremely similar to the SM top quark) by combining his results and previous ATLAS analyses. His results provide a strong constraint to searches for new physics in the future.
This OA text develops the basic concepts of supersymmetry for experimental and phenomenological particle physicists and graduate students.
This book provides a self-contained description of the measurements of the magnetic dipole moments of the electron and muon, along with a discussion of the measurements of the fine structure constant, and the theory associated with magnetic and electric dipole moments. Also included are the searches for a permanent electric dipole moment of the electron, muon, neutron and atomic nuclei. The related topic of the transition moment for lepton flavor violating processes, such as neutrinoless muon or tauon decays, and the search for such processes are included as well. The papers, written by many of the leading authors in this field, cover both the experimental and theoretical aspects of these topics. Sample Chapter(s). Chapter 1: Historical Introduction to Electric and Mangnetic Moments (367 KB). Contents: Historical Introduction (B L Roberts); Electromagnetic Dipole Moments and New Physics (A Czarnecki & W J Marciano); Lepton g OCo 2 from 1947 to Present (T Kinoshita); Analytic QED Calculations of the Anomalous Magnetic Moment of the Electron (S Laporta & E Remiddi); Measurements of the Electron Magnetic Moment (G Gabrielse); Determining the Fine Structure Constant (G Gabrielse); Helium Fine Structure Theory for the Determination of (K Pachucki & J Sapirstein); Hadronic Vacuum Polarization and the Lepton Anomalous Magnetic Moments (M Davier); The Hadronic Light-by-Light Contribution to a, e (J Prades et al.); General Prescriptions for One-loop Contributions to a e, (K R Lynch); Measurement of the Muon ( g OCo 2) Value (J P Miller et al.); Muon ( g OCo 2) and Physics Beyond the Standard Model (D StAckinger); Probing CP Violation with Electric Dipole Moments (M Pospelov & A Ritz); The Electric Dipole Moment of the Electron (E D Commins & D DeMille); Neutron EDM Experiments (S K Lamoreaux & R Golub); Nuclear Electric Dipole Moments (W C Griffith et al.); EDM Measurements in Storage Rings (B L Roberts et al.); Models of Lepton Flavor Violation (Y Okada); Search for the Charged Lepton-Flavor-Violating Transition Moments l OaAE l OC (Y Kuno). Readership: Researchers and graduate students in particle physics, atomic physics and nuclear physics, as well as experts working in the field
Supersymmetry or SUSY, one of the most beautiful recent ideas of physics, predicts sparticles existing as superpartners of particles. This book gives a theoretical and phenomenological account of sparticles. Starting from a basic level, it provides a comprehensive, pedagogical and user-friendly treatment of the subject of four-dimensional N=1 supersymmetry as well as its observational aspects in high energy physics and cosmology. Part One of the book introduces the requisite formal theory, preceded by a discussion of the naturalness problem. Part Two describes the supersymmetrization of the Standard Model of particle interactions as well as the origin of soft supersymmetry breaking and how it can be mediated from higher energies. Search strategies for sparticles, supersymmetric Higgs bosons, nonminimal scenarios and cosmological implications are some of the other topics covered. Novel features of the book include a dictionary between two-component and four-component spinor notation, a step-by-step derivation of the nonrenormalization theorem, an extended discussion of supersymmetric renormalization group evolution, detailed analyses of minimal and nonminimal models with gravity (including anomaly) mediated and gauge mediated supersymmetry breaking as well as elaborate self-contained presentations of collider signals of sparticles plus supersymmetric Higgs bosons and of supersymmetric cosmology. Appendices list all Feynman rules for the vertices of the Minimal Supersymmetric Standard Model.
Supersymmetry is at an exciting stage of development. It extends the Standard Model of particle physics into a more powerful theory that both explains more and allows more questions to be addressed. Most important, it opens a window for studying and testing fundamental theories at the Planck scale. Experimentally we are finally entering the intensity and energy regions where superpartners are likely to be detected, and then studied. There has been progress in understanding the remarkable physics implications of supersymmetry, including the derivation of the Higgs mechanism, the unification of the Standard Model forces, cosmological connections such as a candidate for the cold dark matter of the universe and the scalar fields that drive inflation and their potential, the relationship to Planck scale theories, and more.While there are a number of reviews and books where the mathematical structure and uses of supersymmetry can be learned, there are few where the particle physics is the main focus. This book fills that gap. It begins with an excellent pedagogical introduction to the physics and methods and formalism of supersymmetry, by S Martin, which is accessible to anyone with a basic knowledge of the Standard Model of particle physics. Next is an overview of open questions by K Dienes and C Kolda, followed by chapters on topics ranging from how to detect superpartners to connections with Planck scale theories, by leading experts.This invaluable book will allow any interested physicist to understand the coming experimental and theoretical progress in supersymmetry, and will also help students and workers to quickly learn new aspects of supersymmetry they want to pursue.