Download Free Search For Diphoton Events With Large Missing Transverse Energy In 7 Tev Proton Proton Collisions With The Atlas Detector Book in PDF and EPUB Free Download. You can read online Search For Diphoton Events With Large Missing Transverse Energy In 7 Tev Proton Proton Collisions With The Atlas Detector and write the review.

This book discusses searches for Dark Matter at the CERN’s LHC, the world’s most powerful accelerator. It introduces the relevant theoretical framework and includes an in-depth discussion of the Effective Field Theory approach to Dark Matter production and its validity, as well as an overview of the formalism of Simplified Dark Matter models. Despite overwhelming astrophysical evidence for Dark Matter and numerous experimental efforts to detect it, the nature of Dark Matter still remains a mystery and has become one of the hottest research topics in fundamental physics. Two searches for Dark Matter are presented, performed on data collected with the ATLAS experiment. They analyze missing-energy final states with a jet or with top quarks. The analyses are explained in detail, and the outcomes and their interpretations are discussed, also in view of the precedent analysis of theoretical approaches. Given its depth of coverage, the book represents an excellent reference guide for all physicists interested in understanding the theoretical and experimental considerations relevant to Dark Matter searches at the LHC.
This thesis describes the search for Dark Matter at the LHC in the mono-jet plus missing transverse momentum final state, using the full dataset recorded in 2012 by the ATLAS Experiment. It is the first time that the number of jets is not explicitly restricted to one or two, thus increasing the sensitivity to new signals. Instead, a balance between the most energetic jet and the missing transverse momentum is required, thus selecting mono-jet-like final states. Collider searches for Dark Matter have typically used signal models employing effective field theories (EFTs), even when comparing to results from direct and indirect detection experiments, where the difference in energy scale renders many such comparisons invalid. The thesis features the first robust and comprehensive treatment of the validity of EFTs in collider searches, and provides a means by which the different classifications of Dark Matter experiments can be compared on a sound and fair basis.
This thesis describes in detail a search for weakly interacting massive particles as possible dark matter candidates, making use of so-called mono-jet events. It includes a detailed description of the run-1 system, important operational challenges, and the upgrade for run-2. The nature of dark matter, which accounts for roughly 25% of the energy-matter content of the universe, is one of the biggest open questions in fundamental science. The analysis is based on the full set of proton-proton collisions collected by the ATLAS experiment at the Large Hadron Collider at √s = 8 TeV. Special attention is given to the experimental challenges and analysis techniques, as well as the overall scientific context beyond particle physics. The results complement those of non-collider experiments and yield some of the strongest exclusion bounds on parameters of dark matter models by the end of the Large Hadron Collider run-1. Details of the upgrade of the ATLAS Central Trigger for run-2 are also included.
This Ph.D. thesis is a search for physics beyond the standard model (SM) of particle physics, which successfully describes the interactions and properties of all known elementary particles. However, no particle exists in the SM that can account for the dark matter, which makes up about one quarter of the energy-mass content of the universe. Understanding the nature of dark matter is one goal of the CERN Large Hadron Collider (LHC). The extension of the SM with supersymmetry (SUSY) is considered a promising possibilities to explain dark matter. The nominated thesis describes a search for SUSY using data collected by the CMS experiment at the LHC. It utilizes a final state consisting of a photon, a lepton, and a large momentum imbalance probing a class of SUSY models that has not yet been studied extensively. The thesis stands out not only due to its content that is explained with clarity but also because the author performed more or less all aspects of the thesis analysis by himself, from data skimming to limit calculations, which is extremely rare, especially nowadays in the large LHC collaborations.
This book introduces the reader to the field of jet substructure, starting from the basic considerations for capturing decays of boosted particles in individual jets, to explaining state-of-the-art techniques. Jet substructure methods have become ubiquitous in data analyses at the LHC, with diverse applications stemming from the abundance of jets in proton-proton collisions, the presence of pileup and multiple interactions, and the need to reconstruct and identify decays of highly-Lorentz boosted particles. The last decade has seen a vast increase in our knowledge of all aspects of the field, with a proliferation of new jet substructure algorithms, calculations and measurements which are presented in this book. Recent developments and algorithms are described and put into the larger experimental context. Their usefulness and application are shown in many demonstrative examples and the phenomenological and experimental effects influencing their performance are discussed. A comprehensive overview is given of measurements and searches for new phenomena performed by the ATLAS and CMS Collaborations. This book shows the impressive versatility of jet substructure methods at the LHC.
This thesis represents one of the most comprehensive and in-depth studies of the use of Lorentz-boosted hadronic final state systems in the search for signals of Supersymmetry conducted to date at the Large Hadron Collider. A thorough assessment is performed of the observables that provide enhanced sensitivity to new physics signals otherwise hidden under an enormous background of top quark pairs produced by Standard Model processes. This is complemented by an ingenious analysis optimization procedure that allowed for extending the reach of this analysis by hundreds of GeV in mass of these hypothetical new particles. Lastly, the combination of both deep, thoughtful physics analysis with the development of high-speed electronics for identifying and selecting these same objects is not only unique, but also revolutionary. The Global Feature Extraction system that the author played a critical role in bringing to fruition represents the first dedicated hardware device for selecting these Lorentz-boosted hadronic systems in real-time using state-of-the-art processing chips and embedded systems.
The project reported here was a search for new super symmetric particles in proton-proton collisions at the LHC. It has produced some of the world’s best exclusion limits on such new particles. Furthermore, dedicated simulation studies and data analyses have also yielded essential input to the upgrade activities of the CMS collaboration, both for the Phase-1 pixel detector upgrade and for the R&D studies in pursuit of a Phase-2 end cap calorimeter upgrade.
The work presented in this book is based on the proton-proton collision data from the Large Hadron Collider at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector in 2015 and 2016. The research program of the ATLAS experiment includes the precise measurement of the parameters of the Standard Model, and the search for signals of physics beyond the SM. Both these approaches are pursued in this thesis, which presents two different analyses: the measurement of the Higgs boson mass in the di-photon decay channel, and the search for production of supersymmetric particles (gluinos, squarks or winos) in a final state containing two photons and missing transverse momentum. Finally, ATLAS detector performance studies, which are key ingredients for the two analyses outlined before, are also carried out and described.
This thesis reports on the search for dark matter in data taken with the ATLAS detector at CERN’s Large Hadron Collider (LHC). The identification of dark matter and the determination of its properties are among the highest priorities in elementary particle physics and cosmology. The most likely candidate, a weakly interacting massive particle, could be produced in the high energy proton-proton collisions at the LHC. The analysis presented here is unique in looking for dark matter produced together with a Higgs boson that decays into its dominant decay mode, a pair of b quarks. If dark matter were seen in this mode, we would learn directly about the production mechanism because of the presence of the Higgs boson. This thesis develops the search technique and presents the most stringent production limit to date.