Download Free Search For Diboson Resonances In 8 Tev And 13 Tev Proton Proton Collisions At The Large Hadron Collider With The Atlas Detector Book in PDF and EPUB Free Download. You can read online Search For Diboson Resonances In 8 Tev And 13 Tev Proton Proton Collisions At The Large Hadron Collider With The Atlas Detector and write the review.

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
Introduces the fundamentals of particle physics with a focus on modern developments and an intuitive physical interpretation of results.
The Journal on Advanced Studies in Theoretical and Experimental Physics, including Related Themes from Mathematics
In this dissertation, we revisit the prospects of a strongly interacting theory for the Electroweak Symmetry Breaking Sector of the Standard Model, after the discovery of a Higgs-like boson at 125GeV. As the LHC constrains new phenomena near the Higgs mass, it is natural to assume that the new scale is of order 1TeV. This mass gap might indicate strongly interacting new physics. This work is of quite general validity and model independence. With only a few parameters at the Lagrangian level, multiple channels (possibly with new physics resonances) are describable, and many BSM theories can be treated. It will be of interest to postgraduate students and researchers, and is accessible to newcomers in the field. Many calculations are given in full detail and there are ample graphical illustrations.
This book addresses one of the most intriguing mysteries of our universe: the nature of dark matter. The results presented here mark a significant and substantial contribution to the search for new physics, in particular for new particles that couple to dark matter. The first analysis presented is a search for heavy new particles that decay into pairs of hadronic jets (dijets). This pioneering analysis explores unprecedented dijet invariant masses, reaching nearly 7 TeV, and sets constraints on several important new physics models. The two subsequent analyses focus on the difficult low dijet mass region, down to 200 GeV, and employ a novel technique to efficiently gather low-mass dijet events. The results of these analyses transcend the long-standing constraints on dark matter mediator particles set by several existing experiments.
The Hierarchy Problem is arguably the most important guiding principle concerning the extension to high-energy scales of the Standard Model (SM) of Fundamental Interactions. Every scenario for addressing this issue unavoidably predicts new physics in the TeV energy range, which is currently being probed directly by the LHC experimental program. Among the possible solutions to the Hierarchy Problem, the scenario of a composite Higgs boson is a very simple idea and a rather plausible picture has emerged over the years by combining the following ingredients: First, the Higgs must be a (pseudo-) Nambu-Goldstone boson, rather than a generic hadron of the new strong sector. Second, through the so-called ‘partial compositeness’, SM particles mix with strong sector resonances with suitable quantum numbers, so that they become a linear combination of elementary and composite degrees of freedom. Recently, general descriptions of the Composite Higgs Scenario were developed which successfully capture the relevant features of this theoretical framework in a largely model-independent way. The present book provides a concise and illustrative introduction to the subject for a broad audience of graduate students and non-specialist researchers in the fields of particle, nuclear and gravitational physics.
The book gives a quite complete and up-to-date picture of the Standard Theory with an historical perspective, with a collection of articles written by some of the protagonists of present particle physics. The theoretical developments are described together with the most up-to-date experimental tests, including the discovery of the Higgs Boson and the measurement of its mass as well as the most precise measurements of the top mass, giving the reader a complete description of our present understanding of particle physics.