Download Free Sea Ice In The Canadian Arctic Archipelago Book in PDF and EPUB Free Download. You can read online Sea Ice In The Canadian Arctic Archipelago and write the review.

Freeze-up at Alert, Eureka, Isachsen, Mould Bay, and Resolute in the Canadian Arctic was observed to occur any time between the last week in August and the last week in September. A mathematical relationship between air temperature and sea-ice formation provided a favorable method for predicting the date of freeze-up at these stations. The maximum seasonal growth of sea ice, 269 cm, was measured at Isachsen; the minimum, 149 cm, was measured at Resolute. These values are based on measurements made at the five stations in the Canadian Arctic Archipelago having a total of 35 station years of record. Equations to predict the growth of sea ice by increments were derived empirically from the observations made at these locations. A separate term is introduced in the equations to take account of the effects of snow-cover depths on ice growth. To apply the formulas only air-temperature and snow-depth data are required. The study disclosed good correlation between air temperature and decrease in sea-ice thickness at the Arctic stations. The relationship was found to be: h = 0.55 sigma theta where h = decrease in ice thickness (cm) and sigma theta = accumulated degree days (above -1.8C). (Author).
This open access book is a result of the Dalhousie-led research project Safe Navigation and Environment Protection, supported by a grant from the Ocean Frontier Institute’s the Canada First Research Excellent Fund (CFREF). The book focuses on Arctic shipping and investigates how ocean change and anthropogenic impacts affect our understanding of risk, policy, management and regulation for safe navigation, environment protection, conflict management between ocean uses, and protection of Indigenous peoples’ interests. A rapidly changing Arctic as a result of climate change and ice loss is rendering the North more accessible, providing new opportunities while producing impacts on the Arctic. The book explores ideas for enhanced governance of Arctic shipping through risk-based planning, marine spatial planning and scaling up shipping standards for safety, environment protection and public health.
Surveys atmospheric, oceanic and cryospheric processes, present and past conditions, and changes in polar environments.
Sir David Attenborough was one of the most trusted and admired men in the world - until early 2019, when he narrated a joint Netflix/WWF documentary called Our Planet that showed several walrus falling off a high cliff to their deaths on jagged rocks below. Hundreds were shown to have died, which Attenborough blamed on humanity's wanton use of fossil fuels. Many viewers, including children, were traumatised by the brutal images. He used this horrifying imagery to jump-start a three year campaign against human-caused global warming that included ten documentaries laden with groundless climate emergency messaging, much of it aimed at the wealthiest and most powerful people in the world. Attenborough's relentless climate activism included a utopian vision of global changes for society eerily similar to the one proposed by the World Economic Forum (WEF). The story told in Fallen Icon is every bit as horrifying as the falling walrus tragedy porn Attenborough and the WWF manipulated to their advantage: it is an especially egregious example of science corrupted for political objectives.
This book provides an overview of the current state of knowledge of Arctic ice shelves, ice islands and related features. Ice shelves are permanent areas of ice which float on the ocean surface while attached to the coast, and typically occur in very cold environments where perennial sea ice builds up to great thickness, and/or where glaciers flow off the land and are preserved on the ocean surface. These landscape features are relatively poorly studied in the Arctic, yet they are potentially highly sensitive indicators of climate change because they respond to changes in atmospheric, oceanic and glaciological conditions. Recent fracturing and breakup events of ice shelves in the Canadian High Arctic have attracted significant scientific and public attention, and produced large ice islands which may pose a risk to Arctic shipping and offshore infrastructure. Much has been published about Antarctic ice shelves, but to date there has not been a dedicated book about Arctic ice shelves or ice islands. This book fills that gap.
The current warming trends in the Arctic may shove the Arctic system into a seasonally ice-free state not seen for more than one million years. The melting is accelerating, and researchers were unable to identify natural processes that might slow the deicing of the Arctic. Such substantial additional melting of Arctic and Antarctic glaciers and ice sheets would raise the sea level worldwide, flooding the coastal areas where many of the world's population lives. Studies, led by scientists at the National Center for Atmospheric Research (NCAR) and the University of Arizona, show that greenhouse gas increases over the next century could warm the Arctic by 3-5°C in summertime. Thus, Arctic summers by 2100 may be as warm as they were nearly 130,000 years ago, when sea levels eventually rose up to 6 m higher than today.
We are only now beginning to understand the climatic impact of the remarkable events that are now occurring in subarctic waters. Researchers, however, have yet to agree upon a predictive model that links change in our northern seas to climate. This volume brings together the body of evidence needed to develop climate models that quantify the ocean exchanges through subarctic seas, measure their variability, and gauge their impact on climate.
The Pacific Arctic region is experiencing rapid sea ice retreat, seawater warming, ocean acidification and biological response. Physical and biogeochemical modeling indicates the potential for step-function changes to the overall marine ecosystem. This synthesis book was coordinated within the Pacific Arctic Group, a network of international partners working in the Pacific Arctic. Chapter topics range from atmospheric and physical sciences to chemical processing and biological response to changing environmental conditions. Physical and biogeochemical modeling results highlight the need for data collection and interdisciplinary modeling activities to track and forecast the changing ecosystem of the Pacific Arctic with climate change.
Over the past 20 years the study of the frozen Arctic and Southern Oceans and sub-arctic seas has progressed at a remarkable pace. This third edition of Sea Ice gives insight into the very latest understanding of the how sea ice is formed, how we measure (and model) its extent, the biology that lives within and associated with sea ice and the effect of climate change on its distribution. How sea ice influences the oceanography of underlying waters and the influences that sea ice has on humans living in Arctic regions are also discussed. Featuring twelve new chapters, this edition follows two previous editions (2001 and 2010), and the need for this latest update exhibits just how rapidly the science of sea ice is developing. The 27 chapters are written by a team of more than 50 of the worlds’ leading experts in their fields. These combine to make the book the most comprehensive introduction to the physics, chemistry, biology and geology of sea ice that there is. This third edition of Sea Ice will be a key resource for all policy makers, researchers and students who work with the frozen oceans and seas.