Download Free Scientific Software Design Book in PDF and EPUB Free Download. You can read online Scientific Software Design and write the review.

The authors analyze how the structure of a package determines its developmental complexity according to such measures as bug search times and documentation information content. The work presents arguments for why these issues impact solution cost and time more than does scalable performance. The final chapter explores the question of scalable execution and shows how scalable design relates to scalable execution. The book's focus is on program organization, which has received considerable attention in the broader software engineering community, where graphical description standards for modeling software structure and behavior have been developed by computer scientists. These discussions might be enriched by engineers who write scientific codes. This book aims to bring such scientific programmers into discussion with computer scientists. The authors do so by introducing object-oriented software design patterns in the context of scientific simulation.
Software Engineering for Science provides an in-depth collection of peer-reviewed chapters that describe experiences with applying software engineering practices to the development of scientific software. It provides a better understanding of how software engineering is and should be practiced, and which software engineering practices are effective for scientific software. The book starts with a detailed overview of the Scientific Software Lifecycle, and a general overview of the scientific software development process. It highlights key issues commonly arising during scientific software development, as well as solutions to these problems. The second part of the book provides examples of the use of testing in scientific software development, including key issues and challenges. The chapters then describe solutions and case studies aimed at applying testing to scientific software development efforts. The final part of the book provides examples of applying software engineering techniques to scientific software, including not only computational modeling, but also software for data management and analysis. The authors describe their experiences and lessons learned from developing complex scientific software in different domains. About the Editors Jeffrey Carver is an Associate Professor in the Department of Computer Science at the University of Alabama. He is one of the primary organizers of the workshop series on Software Engineering for Science (http://www.SE4Science.org/workshops). Neil P. Chue Hong is Director of the Software Sustainability Institute at the University of Edinburgh. His research interests include barriers and incentives in research software ecosystems and the role of software as a research object. George K. Thiruvathukal is Professor of Computer Science at Loyola University Chicago and Visiting Faculty at Argonne National Laboratory. His current research is focused on software metrics in open source mathematical and scientific software.
The core of scientific computing is designing, writing, testing, debugging and modifying numerical software for application to a vast range of areas: from graphics, meteorology and chemistry to engineering, biology and finance. Scientists, engineers and computer scientists need to write good code, for speed, clarity, flexibility and ease of re-use. Oliveira and Stewart's style guide for numerical software points out good practices to follow, and pitfalls to avoid. By following their advice, readers will learn how to write efficient software, and how to test it for bugs, accuracy and performance. Techniques are explained with a variety of programming languages, and illustrated with two extensive design examples, one in Fortran 90 and one in C++: other examples in C, C++, Fortran 90 and Java are scattered throughout the book. This manual of scientific computing style will be an essential addition to the bookshelf and lab of everyone who writes numerical software.
This book provides guidelines for practicing design science in the fields of information systems and software engineering research. A design process usually iterates over two activities: first designing an artifact that improves something for stakeholders and subsequently empirically investigating the performance of that artifact in its context. This “validation in context” is a key feature of the book - since an artifact is designed for a context, it should also be validated in this context. The book is divided into five parts. Part I discusses the fundamental nature of design science and its artifacts, as well as related design research questions and goals. Part II deals with the design cycle, i.e. the creation, design and validation of artifacts based on requirements and stakeholder goals. To elaborate this further, Part III presents the role of conceptual frameworks and theories in design science. Part IV continues with the empirical cycle to investigate artifacts in context, and presents the different elements of research problem analysis, research setup and data analysis. Finally, Part V deals with the practical application of the empirical cycle by presenting in detail various research methods, including observational case studies, case-based and sample-based experiments and technical action research. These main sections are complemented by two generic checklists, one for the design cycle and one for the empirical cycle. The book is written for students as well as academic and industrial researchers in software engineering or information systems. It provides guidelines on how to effectively structure research goals, how to analyze research problems concerning design goals and knowledge questions, how to validate artifact designs and how to empirically investigate artifacts in context – and finally how to present the results of the design cycle as a whole.
A variety of programming models relevant to scientists explained, with an emphasis on how programming constructs map to parts of the computer. What makes computer programs fast or slow? To answer this question, we have to get behind the abstractions of programming languages and look at how a computer really works. This book examines and explains a variety of scientific programming models (programming models relevant to scientists) with an emphasis on how programming constructs map to different parts of the computer's architecture. Two themes emerge: program speed and program modularity. Throughout this book, the premise is to "get under the hood," and the discussion is tied to specific programs. The book digs into linkers, compilers, operating systems, and computer architecture to understand how the different parts of the computer interact with programs. It begins with a review of C/C++ and explanations of how libraries, linkers, and Makefiles work. Programming models covered include Pthreads, OpenMP, MPI, TCP/IP, and CUDA.The emphasis on how computers work leads the reader into computer architecture and occasionally into the operating system kernel. The operating system studied is Linux, the preferred platform for scientific computing. Linux is also open source, which allows users to peer into its inner workings. A brief appendix provides a useful table of machines used to time programs. The book's website (https://github.com/divakarvi/bk-spca) has all the programs described in the book as well as a link to the html text.
Fortran is the oldest high-level programming language still in use today. It is widely used in scientific and technical fields, and has evolved over the years into a powerful numerical programming language, with excellent support for high-performance computing and data processing. This text provides an introduction to the most commonly-used modern variant of the language, Fortran 90/95. Unlike most texts on Fortran, there is a strong emphasis on design and software engineering. The reader is not only introduced to the language syntax, but also to how language constructs are best combined to build robust software.
Looking back at the years that have passed since the realization of the very first electronic, multi-purpose computers, one observes a tremendous growth in hardware and software performance. Today, researchers and engi neers have access to computing power and software that can solve numerical problems which are not fully understood in terms of existing mathemati cal theory. Thus, computational sciences must in many respects be viewed as experimental disciplines. As a consequence, there is a demand for high quality, flexible software that allows, and even encourages, experimentation with alternative numerical strategies and mathematical models. Extensibil ity is then a key issue; the software must provide an efficient environment for incorporation of new methods and models that will be required in fu ture problem scenarios. The development of such kind of flexible software is a challenging and expensive task. One way to achieve these goals is to in vest much work in the design and implementation of generic software tools which can be used in a wide range of application fields. In order to provide a forum where researchers could present and discuss their contributions to the described development, an International Work shop on Modern Software Tools for Scientific Computing was arranged in Oslo, Norway, September 16-18, 1996. This workshop, informally referred to as Sci Tools '96, was a collaboration between SINTEF Applied Mathe matics and the Departments of Informatics and Mathematics at the Uni versity of Oslo.
Python for Software Design is a concise introduction to software design using the Python programming language. The focus is on the programming process, with special emphasis on debugging. The book includes a wide range of exercises, from short examples to substantial projects, so that students have ample opportunity to practice each new concept.
Innovative tools and techniques for the development and design of software systems are essential to the problem solving and planning of software solutions. Software Design and Development: Concepts, Methodologies, Tools, and Applications brings together the best practices of theory and implementation in the development of software systems. This reference source is essential for researchers, engineers, practitioners, and scholars seeking the latest knowledge on the techniques, applications, and methodologies for the design and development of software systems.
Highlights: builds on knowledge of both FORTRAN and C, the languages most familiar to scientists and engineers; systematically treats object-oriented programming, templates, and the C++ type system; relates the C++ programming process to expressing commonality in the design and implementation of programs; describes how to use existing FORTRAN and C subroutine libraries to implement C++ classes; introduces advanced techniques coordinating templates, inheritance, virtual function interfaces, and exceptions in substantive examples; provides examples, including an extensive family of array classes, smart pointers, class wrappers for LAPACK, classes for abstract algebra and dimensional analysis, function objects, exploiting existing C and FORTRAN libraries, automatic differentiation, and data analysis via nonlinear least squares using the singular value decomposition; and references key sources of new programming ideas and C++ programming techniques.