Download Free Scientific Metrics Towards Analytical And Quantitative Sciences Book in PDF and EPUB Free Download. You can read online Scientific Metrics Towards Analytical And Quantitative Sciences and write the review.

This book presents scientific metrics and its applications for approaching scientific findings in the field of Physics, Economics and Scientometrics. Based on a collection of the author’s publications in these fields, the book reveals the profound links between the measures and the findings in the natural laws, from micro-particles to macro-cosmos, in the economic rules of human society, and in the core knowledge among mass information. With this book the readers can gain insights or ideas on addressing the questions of how to measure the physical world, economics process and human knowledge, from the perspective of scientific metrics. The book is also useful to scientists, particularly to specialists in physics, economics and scientometrics, for promoting and stimulating their creative ideas based on scientific metrics.
This book is written for members of the scholarly research community, and for persons involved in research evaluation and research policy. More specifically, it is directed towards the following four main groups of readers: – All scientists and scholars who have been or will be subjected to a quantitative assessment of research performance using citation analysis. – Research policy makers and managers who wish to become conversant with the basic features of citation analysis, and about its potentialities and limitations. – Members of peer review committees and other evaluators, who consider the use of citation analysis as a tool in their assessments. – Practitioners and students in the field of quantitative science and technology studies, informetrics, and library and information science. Citation analysis involves the construction and application of a series of indicators of the ‘impact’, ‘influence’ or ‘quality’ of scholarly work, derived from citation data, i.e. data on references cited in footnotes or bibliographies of scholarly research publications. Such indicators are applied both in the study of scholarly communication and in the assessment of research performance. The term ‘scholarly’ comprises all domains of science and scholarship, including not only those fields that are normally denoted as science – the natural and life sciences, mathematical and technical sciences – but also social sciences and humanities.
This landmark textbook takes a whole subject approach to Information Science as a discipline. Introduced by leading international scholars and offering a global perspective on the discipline, this is designed to be the standard text for students worldwide. The authors' expert narrative guides you through each of the essential building blocks of information science offering a concise introduction and expertly chosen further reading and resources. Critical topics covered include: foundations: - concepts, theories and historical perspectives - organising and retrieving information - information behaviour, domain analysis and digital literacies - technologies, digital libraries and information management - information research methods and informetrics - changing contexts: information society, publishing, e-science and digital humanities - the future of the discipline. Readership: Students of information science, information and knowledge management, librarianship, archives and records management worldwide. Students of other information-related disciplines such as museum studies, publishing, and information systems and practitioners in all of these disciplines.
This handbook offers a state-of-the-art overview of quantitative science and technology research. It focuses on the development and application of indicators derived from data on scientific or scholarly publications and patents. It comprises 34 chapters written by leading specialists in the various sub-domains. These chapters deal with theoretical and methodological issues, illustrate applications, and highlight their policy context and relevance. Authors present a survey of the research topics they address, and show their most recent achievements. The 34 chapters are arranged into 5 parts: Disciplinary Approaches; General Methodology; The Science System; The Technology System; and The Science–Technology Interface. The Editor’s Introduction provides a further specification of the handbook’s scope and of the main topics addressed in its chapters. This handbook aims at four distinct groups of readers: – practitioners in the field of science and technology studies; – research students in this field; – scientists, scholars and technicians who are interested in a systematic, thorough analysis of their activities; – policy makers and administrators who wish to be informed about the potentialities and limitations of the various approaches and about their results.
This book provides an accessible introduction to the history, theory and techniques of informetrics. Divided into 14 chapters, it develops the content system of informetrics from the theory, methods and applications; systematically analyzes the six basic laws and the theory basis of informetrics and presents quantitative analysis methods such as citation analysis and computer-aided analysis. It also discusses applications in information resource management, information and library science, science of science, scientific evaluation and the forecast field. Lastly, it describes a new development in informetrics- webometrics. Providing a comprehensive overview of the complex issues in today's environment, this book is a valuable resource for all researchers, students and practitioners in library and information science.
Materials Analysis in Forensic Science will serve as a graduate level text for those studying and teaching materials analysis in forensic science. In addition, it will prove an excellent library reference for forensic practitioners to use in their casework. Coverage includes methods, textiles, explosives, glass, coatings, geo-and bio-materials, and marks and impressions, as well as information on various other materials and professional issues the reader may encounter. Edited by a world-renowned leading forensic expert, the book is a long overdue solution for the forensic science community. - Provides basic principles of forensic science and an overview of materials analysis - Contains information on a wide variety of trace evidence - Covers methods, textiles, explosives, glass, coatings, geo-and bio-materials, and marks and impressions, as well as various other materials - Includes a section on professional issues, such as discussions of the crime scene to court process, lab reports, health and safety, and field deployable devices - Incorporates effective pedagogy, key terms, review questions, discussion questions, and additional reading suggestions
Science maps that can help us understand and navigate the immense amount of results generated by today's science and technology. Cartographic maps have guided our explorations for centuries, allowing us to navigate the world. Science maps have the potential to guide our search for knowledge in the same way, allowing us to visualize scientific results. Science maps help us navigate, understand, and communicate the dynamic and changing structure of science and technology—help us make sense of the avalanche of data generated by scientific research today. Atlas of Science, featuring more than thirty full-page science maps, fifty data charts, a timeline of science-mapping milestones, and 500 color images, serves as a sumptuous visual index to the evolution of modern science and as an introduction to “the science of science”—charting the trajectory from scientific concept to published results. Atlas of Science, based on the popular exhibit, “Places & Spaces: Mapping Science”, describes and displays successful mapping techniques. The heart of the book is a visual feast: Claudius Ptolemy's Cosmographia World Map from 1482; a guide to a PhD thesis that resembles a subway map; “the structure of science” as revealed in a map of citation relationships in papers published in 2002; a visual periodic table; a history flow visualization of the Wikipedia article on abortion; a globe showing the worldwide distribution of patents; a forecast of earthquake risk; hands-on science maps for kids; and many more. Each entry includes the story behind the map and biographies of its makers. Not even the most brilliant minds can keep up with today's deluge of scientific results. Science maps show us the landscape of what we know.
Research demonstrates that STEM disciplines perpetuate a history of exclusion, particularly for students with marginalized identities. This poses problems particularly when science permeates every aspect of contemporary American life. Institutions’ repeated failures to disrupt systemic oppression in STEM has led to a mostly white, cisgender, and male scientific workforce replete with implicit and/or explicit biases. Education holds one pathway to disrupt systemic linkages of STEM oppression from society to the classroom. Maintaining views on science as inherently objective isolates it from the world in which it is performed. STEM education must move beyond the transactional approaches to transformative environments manifesting respect for students’ social and educational capital. We must create a STEM environment in which students with marginalized identities feel respected, listened to, and valued. We must assist students in understanding how their positionality, privilege, and power both historically and currently impacts their meaning making and understanding of STEM.