Download Free Science Properly Explained Book in PDF and EPUB Free Download. You can read online Science Properly Explained and write the review.

One of the pathways by which the scientific community confirms the validity of a new scientific discovery is by repeating the research that produced it. When a scientific effort fails to independently confirm the computations or results of a previous study, some fear that it may be a symptom of a lack of rigor in science, while others argue that such an observed inconsistency can be an important precursor to new discovery. Concerns about reproducibility and replicability have been expressed in both scientific and popular media. As these concerns came to light, Congress requested that the National Academies of Sciences, Engineering, and Medicine conduct a study to assess the extent of issues related to reproducibility and replicability and to offer recommendations for improving rigor and transparency in scientific research. Reproducibility and Replicability in Science defines reproducibility and replicability and examines the factors that may lead to non-reproducibility and non-replicability in research. Unlike the typical expectation of reproducibility between two computations, expectations about replicability are more nuanced, and in some cases a lack of replicability can aid the process of scientific discovery. This report provides recommendations to researchers, academic institutions, journals, and funders on steps they can take to improve reproducibility and replicability in science.
"This is an impressive book. It is an example of that rare item - a book about complex scientific ideas, expressed in clear, simple language - built on real teacher - learner conversations. Starting in the classroom, or the laboratory, with the most common occurence - a teacher offering an explanation, it proceeds by analysing the nature of specific explanations so that teachers can gain fuller insights into what is happening. Having teased out the processes of explanation, the authors then reconstruct them showing how elaboration, transformation and demonstration can enhance the understanding of the learner." Professor Peter Mortimore * How do science teachers explain science to students? * What makes explanations work? Is explaining science just an art, or can it be described, taught and learned? That is the question posed by this book. From extensive classroom observations, the authors give vivid descriptions of how teachers explain science to students, and provide their account with a sound theoretical basis. Attention is given to the ways in which needs for explanation are generated, how the strange new entities of science - from genes to electrons - are created through talk and action, how knowledge is transformed to become explainable, and how demonstrations link explanation and reality. Different styles of explanation are illustrated, from the 'teller of tales' to those who ask students to 'say it my way'. Explaining Science in the Classroom is a new and exciting departure in science education. It brings together science educators and specialists in discourse and communication, to reach a new synthesis of ideas. The book offers science teachers very practical help and insight.
This book provides a novel treatment of Immanuel Kant’s views on proper natural science and biology. The status of biology in Kant’s system of science is often taken to be problematic. By analyzing Kant’s philosophy of biology in relation to his conception of proper science, the present book determines Kant’s views on the scientific status of biology. Combining a broad ideengeschichtlich approach with a detailed historical reconstruction of philosophical and scientific texts, the book establishes important interconnections between Kant’s philosophy of science, his views on biology, and his reception of late 18th century biological theories. It discusses Kant’s views on science and biology as articulated in his published writings and in the Opus postumum. The book shows that although biology is a non-mathematical science and the relation between biology and other natural sciences is not specified, Kant did allow for the possibility of providing scientific explanations in biology and assigned biology a specific domain of investigation.
Basic Science Methods for Clinical Researchers addresses the specific challenges faced by clinicians without a conventional science background. The aim of the book is to introduce the reader to core experimental methods commonly used to answer questions in basic science research and to outline their relative strengths and limitations in generating conclusive data. This book will be a vital companion for clinicians undertaking laboratory-based science. It will support clinicians in the pursuit of their academic interests and in making an original contribution to their chosen field. In doing so, it will facilitate the development of tomorrow's clinician scientists and future leaders in discovery science. - Serves as a helpful guide for clinical researchers who lack a conventional science background - Organized around research themes pertaining to key biological molecules, from genes, to proteins, cells, and model organisms - Features protocols, techniques for troubleshooting common problems, and an explanation of the advantages and limitations of a technique in generating conclusive data - Appendices provide resources for practical research methodology, including legal frameworks for using stem cells and animals in the laboratory, ethical considerations, and good laboratory practice (GLP)
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.
Science and technology are embedded in virtually every aspect of modern life. As a result, people face an increasing need to integrate information from science with their personal values and other considerations as they make important life decisions about medical care, the safety of foods, what to do about climate change, and many other issues. Communicating science effectively, however, is a complex task and an acquired skill. Moreover, the approaches to communicating science that will be most effective for specific audiences and circumstances are not obvious. Fortunately, there is an expanding science base from diverse disciplines that can support science communicators in making these determinations. Communicating Science Effectively offers a research agenda for science communicators and researchers seeking to apply this research and fill gaps in knowledge about how to communicate effectively about science, focusing in particular on issues that are contentious in the public sphere. To inform this research agenda, this publication identifies important influences â€" psychological, economic, political, social, cultural, and media-related â€" on how science related to such issues is understood, perceived, and used.
Black & white print. Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy.
Conjectures and Refutations is one of Karl Popper's most wide-ranging and popular works, notable not only for its acute insight into the way scientific knowledge grows, but also for applying those insights to politics and to history. It provides one of the clearest and most accessible statements of the fundamental idea that guided his work: not only our knowledge, but our aims and our standards, grow through an unending process of trial and error.
This is the first comprehensive overview of the exciting field of the 'science of science'. With anecdotes and detailed, easy-to-follow explanations of the research, this book is accessible to all scientists, policy makers, and administrators with an interest in the wider scientific enterprise.
This book discusses the two main construals of the explanatory goals of semantic theories. The first, externalist conception, understands semantic theories in terms of a hermeneutic and interpretive explanatory project. The second, internalist conception, understands semantic theories in terms of the psychological mechanisms in virtue of which meanings are generated. It is argued that a fruitful scientific explanation is one that aims to uncover the underlying mechanisms in virtue of which the observable phenomena are made possible, and that a scientific semantics should be doing just that. If this is the case, then a scientific semantics is unlikely to be externalist, for reasons having to do with the subject matter and form of externalist theories. It is argued that semantics construed hermeneutically is nevertheless a valuable explanatory project.