Download Free Science Education International Book in PDF and EPUB Free Download. You can read online Science Education International and write the review.

This book comprises a wide range of scholarly essays introducing readers to key topics and issues in science education. Science education has become a well established field in its own right, with a vast literature, and many active areas of scholarship. Science Education: An International Course Companion offers an entry point for students seeking a sound but introductory understanding of the key perspectives and areas of thinking in science education. Each account is self-contained and offers a scholarly and research-informed introduction to a particular topic, theme, or perspective, with both citations to key literature and recommendations for more advanced reading. Science Education: An International Course Companion allows readers (such as those preparing for school science teaching, or seeking more advanced specialist qualifications) to obtain a broad familiarity with key issues across the field as well as guiding wider reading about particular topics of interest. The book therefore acts as a reader to support learning across courses in science education internationally. The broad coverage of topics is such that that the book will support students following a diverse range of courses and qualifications. The comprehensive nature of the book will allow course leaders and departments to nominate the book as the key reader to support students - their core 'course companion' in science education.
Science Education: A Global Perspective is ‘global’ both in content and authorship. Its 17 chapters by an assemblage of seasoned and knowledgeable science educators from many parts of the world seek to bring to the fore current developments in science education and their implications. The book thus covers a wide range of topics in science education from various national and international perspectives. These include the nature of science, science and religion, evolution, curriculum and pedagogy, context-based teaching and learning, science and national development, socially-responsible science education, equitable access for women and girls in science and technology education, and the benefits of science education research. It ends on an optimistic note by looking at science education in 50 years’ time with a recommendation, among others, for stakeholders to take the responsibility of preparing children towards a blossoming science education sector in an anticipated future world. This book is suitable for use by discerning researchers, teachers, undergraduate and postgraduate students in science education, and policy makers at all levels of education. Other educationalists and personnel in science and technology vocations will also find it interesting and useful as the reader-motivated approach has guided the presentation of ideas. Science Education: A Global Perspective is a rich compendium of the components of science education in context, practice, and delivery. Dr Bulent Cavas, Professor of Science Education, Dokuz Eylul Univerity, Buca-Izmir, Turkey/President-Elect, International Council of Associations for Science Education (ICASE) This book will be of immense relevance for current and future global strides in training and research in science education. Surinder K. Ghai, Chairman, Sterling Publishers Pvt. Ltd., New Delhi, India This book provides a refreshing insight into the current status and future direction of science education. It will be very useful to researchers, those pursuing undergraduate and post-graduate courses in science education, and all other personnel involved in the policy and practice of science education. Dr. Bennoit Sossou, Director/Country Representative, UNESCO Regional Office in Abuja, Nigeria
The International Handbook of Science Education is a two volume edition pertaining to the most significant issues in science education. It is a follow-up to the first Handbook, published in 1998, which is seen as the most authoritative resource ever produced in science education. The chapters in this edition are reviews of research in science education and retain the strong international flavor of the project. It covers the diverse theories and methods that have been a foundation for science education and continue to characterize this field. Each section contains a lead chapter that provides an overview and synthesis of the field and related chapters that provide a narrower focus on research and current thinking on the key issues in that field. Leading researchers from around the world have participated as authors and consultants to produce a resource that is comprehensive, detailed and up to date. The chapters provide the most recent and advanced thinking in science education making the Handbook again the most authoritative resource in science education.
Educational researchers are bound to see this as a timely work. It brings together the work of leading experts in argumentation in science education. It presents research combining theoretical and empirical perspectives relevant for secondary science classrooms. Since the 1990s, argumentation studies have increased at a rapid pace, from stray papers to a wealth of research exploring ever more sophisticated issues. It is this fact that makes this volume so crucial.
This book explores how science learning can be more relevant and interesting for students and teachers by using a contextualized approach to science education. The contributors explore the contextualization of science education from multiple angles, such as teacher education, curriculum design, assessment and educational policy, and from multiple national perspectives. The aim of this exploration is to provide and inspire new practical approaches to bring science education closer to the lives of students to accelerate progress towards global scientific literacy. The book presents real life examples of how to make science relevant for children and adolescents of diverse ethnic and language backgrounds, socioeconomic status and nationalities, providing tools and guidance for teacher educators and researchers to improve the contextualization and cultural relevance of their practice. The book includes rigorous studies demonstrating that the contextualization of science learning environments is essential for student engagement in learning science and practitioners' reflections on how to apply this knowledge in the classroom and at national scale. This approach makes this book valuable for researchers and professors of science education and international education interested in designing teacher education courses that prepare future teachers to contextualize their teaching and in adding a critical dimension to their research agendas.
Education in science, technology, engineering and mathematics (STEM) is crucial for taking advantage of the prospects of new scientific discoveries initiating or promoting technological changes, and managing opportunities and risks associated with innovations. This book explores the emerging perspectives and methodologies of STEM education and its relationship to the cultural understanding of science and technology in an international context. The authors provide a unique perspective on the subject, presenting materials and experiences from non-European industrialized as well as industrializing countries, including China, Japan, South Korea, India, Egypt, Brazil and the USA. The chapters offer a wide scope of interpretations and comparative reviews of STEM education by including narrative elements about cultural developments, considering the influence of culture and social perceptions on technological and social change, and applying innovative tools of qualitative social research. The book represents a comprehensive and multidisciplinary review of the current status and future challenges facing STEM education across the world, including issues such as globalization, interdependencies of norms and values, effects on equity and social justice as well as resilience. Overall the volume provides valuable insights for a broad and comprehensive international comparison of STEM philosophies, approaches and experiences.
This handbook gathers in one volume the major research and scholarship related to multicultural science education that has developed since the field was named and established by Atwater in 1993. Culture is defined in this handbook as an integrated pattern of shared values, beliefs, languages, worldviews, behaviors, artifacts, knowledge, and social and political relationships of a group of people in a particular place or time that the people use to understand or make meaning of their world, each other, and other groups of people and to transmit these to succeeding generations. The research studies include both different kinds of qualitative and quantitative studies. The chapters in this volume reflect differing ideas about culture and its impact on science learning and teaching in different K-14 contexts and policy issues. Research findings about groups that are underrepresented in STEM in the United States, and in other countries related to language issues and indigenous knowledge are included in this volume.
This book argues for the essential use of drawing as a tool for science teaching and learning. The authors are working in schools, universities, and continual science learning (CSL) settings around the world. They have written of their experiences using a variety of prompts to encourage people to take pen to paper and draw their thinking – sometimes direct observation and in other instances, their memories. The result is a collection of research and essays that offer theory, techniques, outcomes, and models for the reader. Young children have provided evidence of the perceptions that they have accumulated from families and the media before they reach classrooms. Secondary students describe their ideas of chemistry and physics. Teacher educators use drawings to consider the progress of their undergraduates’ understanding of science teaching and even their moral/ethical responses to teaching about climate change. Museum visitors have drawn their understanding of the physics of how exhibit sounds are transmitted. A physician explains how the history of drawing has been a critical tool to medical education and doctor-patient communications. Each chapter contains samples, insights, and where applicable, analysis techniques. The chapters in this book should be helpful to researchers and teachers alike, across the teaching and learning continuum. The sections are divided by the kinds of activities for which drawing has historically been used in science education: An instance of observation (Audubon, Linnaeus); A process (how plants grow over time, what happens when chemicals combine); Conceptions of what science is and who does it; Images of identity development in science teaching and learning.
This book highlights recent developments in literacy research in science teaching and learning from countries such as Australia, Brazil, China, Finland, Germany, Hong Kong, New Zealand, Norway, Singapore, Spain, South Africa, Sweden, Taiwan, and the United States. It includes multiple topics and perspectives on the role of literacy in enhancing science teaching and learning, such as the struggles faced by students in science literacy learning, case studies and evaluations of classroom-based interventions, and the challenges encountered in the science classrooms. It offers a critical and comprehensive investigation on numerous emerging themes in the area of literacy and science education, including disciplinary literacy, scientific literacy, classroom discourse, multimodality, language and representations of science, and content and language integrated learning (CLIL). The diversity of views and research contexts in this volume presents a useful introductory handbook for academics, researchers, and graduate students working in this specialized niche area. With a wealth of instructional ideas and innovations, it is also highly relevant for teachers and teacher educators seeking to improve science teaching and learning through the use of literacy.
In the spirit of encouraging international dialogue between researchers and practitioners, often working within isolated traditions, this book discusses perspectives on science education for the gifted informed by up-to-date research findings from a number of related fields. The book reviews philosophy, culture and programmes in science education for the gifted in diverse national contexts, and includes scholarly reviews of significant perspectives and up-to-date research methods and findings. The book is written in a straightforward style for students studying international perspective modules on undergraduate, but especially masters and doctoral degrees in Science Education and Gifted Education. Gifted education has come to be regarded as a key national programme in many countries, and gifted education in science disciplines is now of major importance to economic and technological development. Despite these national initiatives and developments, there are very few discussions on gifted education in science from international perspectives. This will be a valued addition to the scholarship in this emergent field.