Download Free Science Education In American Schools Book in PDF and EPUB Free Download. You can read online Science Education In American Schools and write the review.

What is science for a child? How do children learn about science and how to do science? Drawing on a vast array of work from neuroscience to classroom observation, Taking Science to School provides a comprehensive picture of what we know about teaching and learning science from kindergarten through eighth grade. By looking at a broad range of questions, this book provides a basic foundation for guiding science teaching and supporting students in their learning. Taking Science to School answers such questions as: When do children begin to learn about science? Are there critical stages in a child's development of such scientific concepts as mass or animate objects? What role does nonschool learning play in children's knowledge of science? How can science education capitalize on children's natural curiosity? What are the best tasks for books, lectures, and hands-on learning? How can teachers be taught to teach science? The book also provides a detailed examination of how we know what we know about children's learning of scienceâ€"about the role of research and evidence. This book will be an essential resource for everyone involved in K-8 science educationâ€"teachers, principals, boards of education, teacher education providers and accreditors, education researchers, federal education agencies, and state and federal policy makers. It will also be a useful guide for parents and others interested in how children learn.
During the 1950s, leading American scientists embarked on an unprecedented project to remake high school science education. Dissatisfaction with the 'soft' school curriculum of the time advocated by the professional education establishment, and concern over the growing technological sophistication of the Soviet Union, led government officials to encourage a handful of elite research scientists, fresh from their World War II successes, to revitalize the nations' science curricula. In Scientists in the Classroom , John L. Rudolph argues that the Cold War environment, long neglected in the history of education literature, is crucial to understanding both the reasons for the public acceptance of scientific authority in the field of education and the nature of the curriculum materials that were eventually produced. Drawing on a wealth of previously untapped resources from government and university archives, Rudolph focuses on the National Science Foundation-supported curriculum projects initiated in 1956. What the historical record reveals, according to Rudolph, is that these materials were designed not just to improve American science education, but to advance the professional interest of the American scientific community in the postwar period as well.
In a world where advanced knowledge is widespread and low-cost labor is readily available, U.S. advantages in the marketplace and in science and technology have begun to erode. A comprehensive and coordinated federal effort is urgently needed to bolster U.S. competitiveness and pre-eminence in these areas. This congressionally requested report by a pre-eminent committee makes four recommendations along with 20 implementation actions that federal policy-makers should take to create high-quality jobs and focus new science and technology efforts on meeting the nation's needs, especially in the area of clean, affordable energy: 1) Increase America's talent pool by vastly improving K-12 mathematics and science education; 2) Sustain and strengthen the nation's commitment to long-term basic research; 3) Develop, recruit, and retain top students, scientists, and engineers from both the U.S. and abroad; and 4) Ensure that the United States is the premier place in the world for innovation. Some actions will involve changing existing laws, while others will require financial support that would come from reallocating existing budgets or increasing them. Rising Above the Gathering Storm will be of great interest to federal and state government agencies, educators and schools, public decision makers, research sponsors, regulatory analysts, and scholars.
First Published in 2003. Routledge is an imprint of Taylor & Francis, an informa company.
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.
Published to glowing praise in 1990, Science for All Americans defined the science-literate American--describing the knowledge, skills, and attitudes all students should retain from their learning experience--and offered a series of recommendations for reforming our system of education in science, mathematics, and technology. Benchmarks for Science Literacy takes this one step further. Created in close consultation with a cross-section of American teachers, administrators, and scientists, Benchmarks elaborates on the recommendations to provide guidelines for what all students should know and be able to do in science, mathematics, and technology by the end of grades 2, 5, 8, and 12. These grade levels offer reasonable checkpoints for student progress toward science literacy, but do not suggest a rigid formula for teaching. Benchmarks is not a proposed curriculum, nor is it a plan for one: it is a tool educators can use as they design curricula that fit their student's needs and meet the goals first outlined in Science for All Americans. Far from pressing for a single educational program, Project 2061 advocates a reform strategy that will lead to more curriculum diversity than is common today. IBenchmarks emerged from the work of six diverse school-district teams who were asked to rethink the K-12 curriculum and outline alternative ways of achieving science literacy for all students. These teams based their work on published research and the continuing advice of prominent educators, as well as their own teaching experience. Focusing on the understanding and interconnection of key concepts rather than rote memorization of terms and isolated facts, Benchmarks advocates building a lasting understanding of science and related fields. In a culture increasingly pervaded by science, mathematics, and technology, science literacy require habits of mind that will enable citizens to understand the world around them, make some sense of new technologies as they emerge and grow, and deal sensibly with problems that involve evidence, numbers, patterns, logical arguments, and technology--as well as the relationship of these disciplines to the arts, humanities, and vocational sciences--making science literacy relevant to all students, regardless of their career paths. If Americans are to participate in a world shaped by modern science and mathematics, a world where technological know-how will offer the keys to economic and political stability in the twenty-first century, education in these areas must become one of the nation's highest priorities. Together with Science for All Americans, Benchmarks for Science Literacy offers a bold new agenda for the future of science education in this country, one that is certain to prepare our children for life in the twenty-first century.
In order to compete in the modern world, any society today must rank education in science, mathematics, and technology as one of its highest priorities. It's a sad but true fact, however, that most Americans are not scientifically literate. International studies of educational performance reveal that U.S. students consistently rank near the bottom in science and mathematics. The latest study of the National Assessment of Educational Progress has found that despite some small gains recently, the average performance of seventeen-year-olds in 1986 remained substantially lower than it had been in 1969. As the world approaches the twenty-first century, American schools-- when it comes to the advancement of scientific knowledge-- seem to be stuck in the Victorian age. In Science for All Americans, F. James Rutherford and Andrew Ahlgren brilliantly tackle this devastating problem. Based on Project 2061, a scientific literacy initiative sponsored by the American Association for the Advancement of Science, this wide-ranging, important volume explores what constitutes scientific literacy in a modern society; the knowledge, skills, and attitudes all students should acquire from their total school experience from kindergarten through high school; and what steps this country must take to begin reforming its system of education in science, mathematics, and technology. Science for All Americans describes the scientifically literate person as one who knows that science, mathematics, and technology are interdependent enterprises with strengths and limitations; who understands key concepts and principles of science; who recognizes both the diversity and unity of the natural world; and who uses scientific knowledge and scientific ways of thinking for personal and social purposes. Its recommendations for educational reform downplay traditional subject categories and instead highlight the connections between them. It also emphasizes ideas and thinking skills over the memorization of specialized vocabulary. For instance, basic scientific literacy means knowing that the chief function of living cells is assembling protein molecules according to the instructions coded in DNA molecules, but does not mean necessarily knowing the terms "ribosome" or "deoxyribonucleic acid." Science, mathematics, and technology will be at the center of the radical changes in the nature of human existence that will occur during the next life span; therefore, preparing today's children for tomorrow's world must entail a solid education in these areas. Science for All Americans will help pave the way for the necessary reforms in America's schools.
Vividly revealing the multiple layers on which print has been produced, consumed, regulated, and contested for the purpose of education since the mid-nineteenth century, the historical case studies in Education and the Culture of Print in Modern America deploy a view of education that extends far beyond the confines of traditional classrooms. The nine essays examine “how print educates” in settings as diverse as depression-era work camps, religious training, and broadcast television—all the while revealing the enduring tensions that exist among the controlling interests of print producers and consumers. This volume exposes what counts as education in American society and the many contexts in which education and print intersect. Offering perspectives from print culture history, library and information studies, literary studies, labor history, gender history, the history of race and ethnicity, the history of science and technology, religious studies, and the history of childhood and adolescence, Education and the Culture of Print in Modern America pioneers an investigation into the intersection of education and print culture.
2018 Outstanding Academic Title, Choice Ambitious Science Teaching outlines a powerful framework for science teaching to ensure that instruction is rigorous and equitable for students from all backgrounds. The practices presented in the book are being used in schools and districts that seek to improve science teaching at scale, and a wide range of science subjects and grade levels are represented. The book is organized around four sets of core teaching practices: planning for engagement with big ideas; eliciting student thinking; supporting changes in students’ thinking; and drawing together evidence-based explanations. Discussion of each practice includes tools and routines that teachers can use to support students’ participation, transcripts of actual student-teacher dialogue and descriptions of teachers’ thinking as it unfolds, and examples of student work. The book also provides explicit guidance for “opportunity to learn” strategies that can help scaffold the participation of diverse students. Since the success of these practices depends so heavily on discourse among students, Ambitious Science Teaching includes chapters on productive classroom talk. Science-specific skills such as modeling and scientific argument are also covered. Drawing on the emerging research on core teaching practices and their extensive work with preservice and in-service teachers, Ambitious Science Teaching presents a coherent and aligned set of resources for educators striving to meet the considerable challenges that have been set for them.
Schools for Thought provides a straightforward, general introduction to cognitive research and illustrates its importance for educational change. If we want to improve educational opportunities and outcomes for all children, we must start applying what we know about mental functioning--how children think, learn, and remember in our schools. We must apply cognitive science in the classroom. Schools for Thought provides a straightforward, general introduction to cognitive research and illustrates its importance for educational change. Using classroom examples, Bruer shows how applying cognitive research can dramatically improve students' transitions from lower-level rote skills to advanced proficiency in reading, writing, mathematics, and science. Cognitive research, he points out, is also beginning to suggest how we might better motivate students, design more effective tools for assessing them, and improve the training of teachers. He concludes with a chapter on how effective school reform demands that we expand our understanding of teaching and learning and that we think about education in new ways. Debates and discussions about the reform of American education suffer from a lack of appreciation of the complexity of learning and from a lack of understanding about the knowledge base that is available for the improvement of educational practice. Politicians, business leaders, and even many school superintendents, principals, and teachers think that educational problems can be solved by changing school management structures or by creating a market in educational services. Bruer argues that improvement depends instead on changing student-teacher interactions. It is these changes, guided by cognitive research, that will create more effective classroom environments. A Bradford Book