Download Free Science And Engineering Of Composting Book in PDF and EPUB Free Download. You can read online Science And Engineering Of Composting and write the review.

Composting is a widely used biological process for the management of some wastes produced in communities and agricultural activities, which have experienced substantial growth during the last few years. Because this and the knowledge of composting has increased, the number of composting facilities has increased tremendously, especially in some European countries. Interest has also increased in several countries in other regions of the world. Compost Science and Technology attempts to summarize some of the most important work conducted during the last few years under one cover. The contributions to the publication are made by some of the most qualified professionals in the world and present the information in a clear and objective manner. The readers will find the information very useful and will be helpful in the design of new facilities and organic recycling programs. The manager or interested member of the community does not have to have a rigorous training in science or technology. - Up-to-date contributions by some of the most knowledgeable and respected leaders in the field - Clear and objective presentations, which are arranged in such a way that it is not necessary to read the entire book - Information is supported by data, tables and references - Covers most important aspects of the process including a brief historical review - May be used by teachers as well as practicioners in the field
Part I: Composting process: microbiology, engineering, systems and infrastructure; Part II: odor prevention and control: prevention and treatment; Part III: Pathogen destruction: worker and neighborhood impacts; Part IV: Biodegradation of organic pollutants during composting: pesticides, macromolecules and safety assessment; Part V: Heavy metals in composts: general considerations; Part VI: Compost maturity and stability; Part VII: Beneficial effects induced by composts; Part VIII: Economic considerations.
FROM THE PREFACE The main objective of composting is to transform organic materials into a stable usable product. Often organic materials which may have limited beneficial use in their raw state or have regulatory disposal constraints can be transformed by composting into marketable products. The limits on beneficial reuse may be regulations or they may be due to the potential for materials to be putrescible or pathogenic. Composting can be a solution for each of these. The implementation of composting on a large scale (in contrast to home or backyard composting) involves materials handling. Technological implementation of composting must be consistent with the biological demand of the system. If the biological system is violated, conditions will not be optimized for composting, and problems such as odor generation, insufficient aeration or moisture, or a combination of these conditions may result. Past problems and closure of facilities have been largely due to violations of the biological systems. Product quality with respect to particle size, inclusions, moisture content and other physical aspects are a function of engineering design. A well designed system must have the biological and engineering principles in harmony at all times.
The European Union initially demonstrated its interest in waste in the late 70s with the progamme on Waste Recycling Research and Development. At that time composting was only present as a coordination activity and it was only later that specific research programmes in the area were within Europe which was largely instrumental in setting up a series of European conferences, seminars and work shops. Some of these have resulted in publications which have made significant contributions to developments in the understanding of composting and the use of composts. In particular the outputs from meetings in Oxford ( 1984), Udine (1986), Neresheim ( 1988) and Angers ( 1991) are worthy of note. Composting has seen significant changes since the 70s when the major thrust in Europe was using mixed municipal solid waste as a feed material. Many com posting plants which were built to use this material were closed due to the poor quality of the compost which made it very difficult to market. As a result the main areas of interest, as far as the municipa1ities are concemed, are now with biowaste and source-separated organics. This interest is apparent from the many new plants which are being constructed across Europe, and the ready market which exists for the products. In parallel with the renewed interest of the municipalities other areas, such as agriculture and the wastewater treatment industries, are also developing their own schemes.
Composting is increasingly used as a recycling technology for organic wastes. Knowledge on the composition and activities of compost microbial communities has so far been based on traditional methods. New molecular and physiological tools now offer new insights into the "black box" of decaying material. An unforeseen diversity of microorganisms are involved in composting, opening up an enormous potential for future process and product improvements. In this book, the views of scientists, engineers and end-users on compost production, process optimisation, standardisation and product application are presented.
The Practical Handbook of Compost Engineering presents an in-depth examination of the principles and practice of modern day composting. This comprehensive book covers compost science, engineering design, operation, principles, and practice, stressing a fundamental approach to analysis throughout. Biological, physical, chemical, thermodynamic, and kinetic principles are covered to develop a unified analytical approach to analysis and an understanding of the process. A brief history of the development of composting systems, which leads to descriptions of modern processes, is presented. The Practical Handbook of Compost Engineering also discusses the elements of successful odor management at composting facilities, including state-of-the-art odor treatment and enhanced atmospheric dispersion. The book is excellent for all engineers, practitioners, plant operators, scientists, researchers, and students in the field.
Promote inquiry-based learning and environmental responsibility at the same time. Composting in the Classroom is your comprehensive guide offering descriptions of a range of composting mechanisms, from tabletop soda bottles to outdoor bins. Activities vary in complexity -- you can use this as a whole unit, or pick and choose individual activities.
The Composting Handbook provides a single guide to the science, principles and best practices of composting for large-scale composting operations facing a variety of opportunities and challenges converting raw organic materials into a useful and marketable product. Composting is a well-established and increasingly important method to recycle and add value to organic by-products. Many, if not most, of the materials composting treats are discarded materials that would otherwise place a burden on communities, industries, farms and the environment. Composting converts these materials into a valuable material, compost, that regenerates soils improving soils for plant growth and environmental conservation. The Composting Handbook expands on previously available resources by incorporating new information, new subjects and new practices, drawing its content from current scientific principles, research, engineering and industry experience. In both depth and breadth, it covers the knowledge that a compost producer needs to succeed. Topics include the composting process, methods of composting, equipment, site requirements, environmental issues and impacts, business knowledge, safety, and the qualities, uses and markets for the compost products. The Composting Handbook is an invaluable reference for composting facility managers and operators, prospective managers and operators, regulators, policy makers, environmental advocates, educators, waste generators and managers and generally people interested in composting as a business or a solution. It is also appropriate as a textbook for college courses and a supplemental text for training courses about composting or organic waste management. Created in conjunction with the Compost Research and Education Foundation (CREF) Includes the latest information on composting and compost, providing the first comprehensive resource in decades Written with focus on both academic and industrial insights and advances
Benefits and drawbacks; The composing process; Raw materials; Composting methods; Composting operations; Management; Site and environmental considerations; Using compost; Marketing agricultural compost; Farm composting economics: focus on production costs; Other options for waste management and composting; Characteristics of raw materials; Equipment tables; Troubleshooting and management guide; Work sheets and forms; Environmental agencies; Metric conversions.