Download Free Scan Statistics And Applications Book in PDF and EPUB Free Download. You can read online Scan Statistics And Applications and write the review.

In many statistical applications, scientists have to analyze the occurrence of observed clusters of events in time or space. Scientists are especially interested in determining whether an observed cluster of events has occurred by chance if it is assumed that the events are distributed independently and uniformly over time or space. Scan statistics have relevant applications in many areas of science and technology including geology, geography, medicine, minefield detection, molecular biology, photography, quality control and reliability theory and radio-optics.
The study of scan statistics and their applications to many different scientific and engineering problems have received considerable attention in the literature recently. In addition to challenging theoretical problems, the area of scan statis tics has also found exciting applications in diverse disciplines such as archaeol ogy, astronomy, epidemiology, geography, material science, molecular biology, reconnaissance, reliability and quality control, sociology, and telecommunica tion. This will be clearly evident when one goes through this volume. In this volume, we have brought together a collection of experts working in this area of research in order to review some of the developments that have taken place over the years and also to present their new works and point out some open problems. With this in mind, we selected authors for this volume with some having theoretical interests and others being primarily concerned with applications of scan statistics. Our sincere hope is that this volume will thus provide a comprehensive survey of all the developments in this area of research and hence will serve as a valuable source as well as reference for theoreticians and applied researchers. Graduate students interested in this area will find this volume to be particularly useful as it points out many open challenging problems that they could pursue. This volume will also be appropriate for teaching a graduate-level special course on this topic.
Expert practical and theoretical coverage of runs and scans This volume presents both theoretical and applied aspects of runs and scans, and illustrates their important role in reliability analysis through various applications from science and engineering. Runs and Scans with Applications presents new and exciting content in a systematic and cohesive way in a single comprehensive volume, complete with relevant approximations and explanations of some limit theorems. The authors provide detailed discussions of both classical and current problems, such as: * Sooner and later waiting time * Consecutive systems * Start-up demonstration testing in life-testing experiments * Learning and memory models * "Match" in genetic codes Runs and Scans with Applications offers broad coverage of the subject in the context of reliability and life-testing settings and serves as an authoritative reference for students and professionals alike.
Data clustering, also known as cluster analysis, is an unsupervised process that divides a set of objects into homogeneous groups. Since the publication of the first edition of this monograph in 2007, development in the area has exploded, especially in clustering algorithms for big data and open-source software for cluster analysis. This second edition reflects these new developments, covers the basics of data clustering, includes a list of popular clustering algorithms, and provides program code that helps users implement clustering algorithms. Data Clustering: Theory, Algorithms and Applications, Second Edition will be of interest to researchers, practitioners, and data scientists as well as undergraduate and graduate students.
Theory of Spatial Statistics: A Concise Introduction presents the most important models used in spatial statistics, including random fields and point processes, from a rigorous mathematical point of view and shows how to carry out statistical inference. It contains full proofs, real-life examples and theoretical exercises. Solutions to the latter are available in an appendix. Assuming maturity in probability and statistics, these concise lecture notes are self-contained and cover enough material for a semester course. They may also serve as a reference book for researchers. Features * Presents the mathematical foundations of spatial statistics. * Contains worked examples from mining, disease mapping, forestry, soil and environmental science, and criminology. * Gives pointers to the literature to facilitate further study. * Provides example code in R to encourage the student to experiment. * Offers exercises and their solutions to test and deepen understanding. The book is suitable for postgraduate and advanced undergraduate students in mathematics and statistics.
The widespread popularity of geographic information systems (GIS) has led to new insights in countless areas of application. It has facilitated not only the collection and storage of geographic data, but also the display of such data. Building on this progress by using an integrated approach, Statistical Detection and Monitoring of Geographic Clust
Scan statistics are used in many areas of science and technology to analyze the occurence of observed clusters of events in time and space. The goal is to determine whether an observed cluster of events occurred by chance if it is assumed that the observed events follow a specified probability model. Scan Statistics and Applications is a comprehensive, edited survey that brings together the work of leading authorities to present the most current advances in theory and methodology for this new area of statistical research and application. The chapters contain broad coverage of theory and new analytical and computational methods and techniques in four categories: introductory survey, discrete scan statistics, continuous scan statistics, and applications. Features and Topics:* Comprehensive introductory survey chapter* Discrete scan statistics* Finite Markov chain imbedding* Continuous scan statistics* Spatial scan statistics* Applications in DNA sequence analysis* Monte Carlo approaches to testing order statistics and spacing The book is a valuable resource and state-of-the-art reference for all practitioners, researchers, and professionals in applied probability and statistics who use scan statistics in their work.nbsp;
A rigorous, comprehensive introduction to the finite Markov chain imbedding technique for studying the distributions of runs and patterns from a unified and intuitive viewpoint, away from the lines of traditional combinatorics.
Geospatial health data are essential to inform public health and policy. These data can be used to quantify disease burden, understand geographic and temporal patterns, identify risk factors, and measure inequalities. Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny describes spatial and spatio-temporal statistical methods and visualization techniques to analyze georeferenced health data in R. The book covers the following topics: Manipulate and transform point, areal, and raster data, Bayesian hierarchical models for disease mapping using areal and geostatistical data, Fit and interpret spatial and spatio-temporal models with the Integrated Nested Laplace Approximations (INLA) and the Stochastic Partial Differential Equation (SPDE) approaches, Create interactive and static visualizations such as disease maps and time plots, Reproducible R Markdown reports, interactive dashboards, and Shiny web applications that facilitate the communication of insights to collaborators and policy makers. The book features fully reproducible examples of several disease and environmental applications using real-world data such as malaria in The Gambia, cancer in Scotland and USA, and air pollution in Spain. Examples in the book focus on health applications, but the approaches covered are also applicable to other fields that use georeferenced data including epidemiology, ecology, demography or criminology. The book provides clear descriptions of the R code for data importing, manipulation, modeling and visualization, as well as the interpretation of the results. This ensures contents are fully reproducible and accessible for students, researchers and practitioners.
Inspired by the Encyclopedia of Statistical Sciences, Second Edition, this volume outlines the statistical tools for successfully working with modern life and health sciences research Data collection holds an essential part in dictating the future of health sciences and public health, as the compilation of statistics allows researchers and medical practitioners to monitor trends in health status, identify health problems, and evaluate the impact of health policies and programs. Methods and Applications of Statistics in the Life and Health Sciences serves as a single, one-of-a-kind resource on the wide range of statistical methods, techniques, and applications that are applied in modern life and health sciences in research. Specially designed to present encyclopedic content in an accessible and self-contained format, this book outlines thorough coverage of the underlying theory and standard applications to research in related disciplines such as biology, epidemiology, clinical trials, and public health. Uniquely combining established literature with cutting-edge research, this book contains classical works and more than twenty-five new articles and completely revised contributions from the acclaimed Encyclopedia of Statistical Sciences, Second Edition. The result is a compilation of more than eighty articles that explores classic methodology and new topics, including: Sequential methods in biomedical research Statistical measures of human quality of life Change-point methods in genetics Sample size determination for clinical trials Mixed-effects regression models for predicting pre-clinical disease Probabilistic and statistical models for conception Statistical methods are explored and applied to population growth, disease detection and treatment, genetic and genomic research, drug development, clinical trials, screening and prevention, and the assessment of rehabilitation, recovery, and quality of life. These topics are explored in contributions written by more than 100 leading academics, researchers, and practitioners who utilize various statistical practices, such as election bias, survival analysis, missing data techniques, and cluster analysis for handling the wide array of modern issues in the life and health sciences. With its combination of traditional methodology and newly developed research, Methods and Applications of Statistics in the Life and Health Sciences has everything students, academics, and researchers in the life and health sciences need to build and apply their knowledge of statistical methods and applications.