Download Free Sc Fdma For Mobile Communications Book in PDF and EPUB Free Download. You can read online Sc Fdma For Mobile Communications and write the review.

SC-FDMA for Mobile Communications examines Single-Carrier Frequency Division Multiple Access (SC-FDMA). Explaining this rapidly evolving system for mobile communications, it describes its advantages and limitations and outlines possible solutions for addressing its current limitations.The book explores the emerging trend of cooperative communicatio
Single Carrier Frequency Division Multiple Access (SC-FDMA) is a novel method of radio transmission under consideration for deployment in future cellular systems; specifically, in 3rd Generation Partnership Project Long Term Evolution (3GPP LTE) systems. SC-FDMA has drawn great attention from the communications industry as an attractive alternative to Orthogonal Frequency Division Multiple Access (OFDMA). Introduction to Single Carrier FDMA places SC-FDMA in the wider context of wireless communications, providing the reader with an in-depth tutorial on SC-FDMA technology. The book introduces the reader to this new multiple access technique that utilizes single carrier modulation along with orthogonal frequency multiplexing and frequency domain equalization, plus its applications in communications settings. It considers the similarities with and differences from orthogonal frequency division modulation, multiplexing, and multiple access used extensively in cellular, broadcasting, and digital subscriber loop applications. Particular reference is made to the peak power characteristics of an SC-FDMA signal as an added advantage over OFDMA. Provides an extensive overview of the principles of SC-FDMA and its relation to other transmission techniques. Explains how the details of a specific implementation influence the tradeoffs among various figures of merit. Describes in detail the configuration of the SC-FDMA uplink transmission scheme published by 3GPP. Features link level simulation of an uplink SC-FDMA system using MATLAB. This is an essential text for industry engineers who are researching and developing 3GPP LTE systems. It is suitable for engineers designing wireless network equipment, handsets, data cards, modules, chipsets, and test equipment as well as those involved in designing LTE infrastructure. It would also be of interest to academics, graduate students, and industry researchers involved in advanced wireless communications, as well as business analysts who follow the cellular market.
From the editors of the highly successful WCDMA for UMTS, this new book gives a complete and up-to-date overview of Long Term Evolution (LTE) in a systematic and clear manner. It starts with an in-depth explanation of the background and standardization process before moving on to examine the system architecture evolution (SAE). The basics of air interface modulation choices are introduced and key subjects such as 3GPP LTE physical layer and protocol solutions are described. Mobility aspects and radio resource management together with radio and end-to-end performance are assessed. The voice solution and voice capacity in LTE are also illustrated. Finally, the main differences between LTE TDD and FDD modes are examined and HSPA evolution in 3GPP Releases 7 and 8 is described. LTE for UMTS is one of the first books to provide a comprehensive guide to the standards and technologies of LTE. Key features of the book include: Covers all the key aspects of LTE in a systematic manner Presents full description of 3GPP Release 8 LTE Examines the expected performance of LTE Written by experts actively involved in the 3GPP standards and product development.
Understand the new technologies of the LTE standard and their impact on system performance improvements with this practical guide.
The Definitive Guide to LTE Technology Long-Term Evolution (LTE) is the next step in the GSM evolutionary path beyond 3G technology, and it is strongly positioned to be the dominant global standard for 4G cellular networks. LTE also represents the first generation of cellular networks to be based on a flat IP architecture and is designed to seamlessly support a variety of different services, such as broadband data, voice, and multicast video. Its design incorporates many of the key innovations of digital communication, such as MIMO (multiple input multiple output) and OFDMA (orthogonal frequency division multiple access), that mandate new skills to plan, build, and deploy an LTE network. In Fundamentals of LTE, four leading experts from academia and industry explain the technical foundations of LTE in a tutorial style—providing a comprehensive overview of the standards. Following the same approach that made their recent Fundamentals of WiMAX successful, the authors offer a complete framework for understanding and evaluating LTE. Topics include Cellular wireless history and evolution: Technical advances, market drivers, and foundational networking and communications technologies Multicarrier modulation theory and practice: OFDM system design, peak-to-average power ratios, and SC-FDE solutions Frequency Domain Multiple Access: OFDMA downlinks, SC-FDMA uplinks, resource allocation, and LTE-specific implementation Multiple antenna techniques and tradeoffs: spatial diversity, interference cancellation, spatial multiplexing, and multiuser/networked MIMO LTE standard overview: air interface protocol, channel structure, and physical layers Downlink and uplink transport channel processing: channel encoding, modulation mapping, Hybrid ARQ, multi-antenna processing, and more Physical/MAC layer procedures and scheduling: channel-aware scheduling, closed/open-loop multi-antenna processing, and more Packet flow, radio resource, and mobility management: RLC, PDCP, RRM, and LTE radio access network mobility/handoff procedures
As a promising technique, OFDM has been widely used in emerging broadband communication systems, such as digital audio broadcasting (DAB), high-definition television (HDTV), and wireless local area network (IEEE 802.11a and HIPERLAN/2). However, as the OFDM signals are the sum of signals with random amplitude and phase, they are likely to have large PAPR that require a linear high-power- amplifier (HPA) with an extremely high dynamic range which is expensive and inefficient. Furthermore, any amplifier nonlinearity causes intermodulation products resulting in unwanted out-of-band power. A number of approaches have been proposed to deal with the PAPR problem, including amongst others, clipping, clipping-and-filtering (CF), coding, companding transform, active constellation extension (ACE), selected mapping (SLM), and partial transmit sequence (PTS). This book proposes an improvement in the selected mapping technique. The resulting scheme can also be applied to the multiple transmitting antenna cases. Further, it compares the simulation results to the existing techniques namely exponential companding transform, repeated clipping and filtering, and adaptive active constellation extension.
This textbook takes a unified view of the fundamentals of wireless communication and explains cutting-edge concepts in a simple and intuitive way. An abundant supply of exercises make it ideal for graduate courses in electrical and computer engineering and it will also be of great interest to practising engineers.
Long Term Evolution (LTE) was originally an internal 3GPP name for a program to enhance the capabilities of 3G radio access networks. The nickname has now evolved to become synonymous with 4G. This book concentrates on 4G systems, also known as LTE-Advanced. Telecommunications engineers and students are provided with a history of these systems, along with an overview of a mobile telecommunications system. The overview addresses the components in the system as well as their function. This resource guides telecommunications engineers though many important aspects of 4G including the air interface physical layer, Radio Access Networks, and 3GPP standardization, to name a few.
This book is a compilation of research work in the interdisciplinary areas of electronics, communication, and computing. This book is specifically targeted at students, research scholars and academicians. The book covers the different approaches and techniques for specific applications, such as particle-swarm optimization, Otsu’s function and harmony search optimization algorithm, triple gate silicon on insulator (SOI)MOSFET, micro-Raman and Fourier Transform Infrared Spectroscopy (FTIR) analysis, high-k dielectric gate oxide, spectrum sensing in cognitive radio, microstrip antenna, Ground-penetrating radar (GPR) with conducting surfaces, and digital image forgery detection. The contents of the book will be useful to academic and professional researchers alike.
Principles of Mobile Communication provides an authoritative treatment of the fundamentals of mobile communications, one of the fastest growing areas of the modern telecommunications industry. The book stresses the fundamentals of mobile communications engineering that are important for the design of any mobile system. Less emphasis is placed on the description of existing and proposed wireless standards. This focus on fundamental issues should be of benefit not only to students taking formal instruction but also to practising engineers who are likely to already have a detailed familiarity with the standards and are seeking to deepen their knowledge of this important field. The book stresses mathematical modeling and analysis, rather than providing a qualitative overview. It has been specifically developed as a textbook for graduate level instruction and a reference book for practising engineers and those seeking to pursue research in the area. The book contains sufficient background material for the novice, yet enough advanced material for a sequence of graduate level courses. Principles of Mobile Communication treats a variety of contemporary issues, many of which have been treated before only in the journals. Some material in the book has never appeared before in the literature. The book provides an up-to-date treatment of the subject area at a level of detail that is not available in other books. Also, the book is unique in that the whole range of topics covered is not presently available in any other book. Throughout the book, detailed derivations are provided and extensive references to the literature are made. This is of value to the reader wishing to gain detailed knowledge of a particular topic.