Download Free Satellite Systems Book in PDF and EPUB Free Download. You can read online Satellite Systems and write the review.

The updated 6th edition of the authoritative and comprehensive textbook to the field of satellite communications engineering The revised and updated sixth edition of Satellite Communications Systems contains information on the most recent advances related to satellite communications systems, technologies, network architectures and new requirements of services and applications. The authors – noted experts on the topic – cover the state-of-the-art satellite communication systems and technologies and examine the relevant topics concerning communication and network technologies, concepts, techniques and algorithms. New to this edition is information on internetworking with the broadband satellite systems, more intensive coverage of Ka band technologies, GEO high throughput satellite (HTS), LEO constellations and the potential to support the current new broadband Internet services as well as future developments for global information infrastructure. The authors offer details on digital communication systems and broadband networks in order to provide high-level researchers and professional engineers an authoritative reference. In addition, the book is designed in a user-friendly format. This important text: Puts the focus on satellite communications and networks as well as the related applications and services Provides an essential, comprehensive and authoritative updated guide to the topic Contains new topics including the space segment, ground, ground satellite control and network management, relevant terrestrial networks and more Includes helpful illustrations, tables and problems to enhance learning Offers a summary at the beginning of each chapter to help understand the concepts and principles discussed Written for research students studying or researching in the areas related to satellite communications systems and networks, the updated sixth edition of Satellite Communications Systems offers an essential guide to the most recent developments in the field of satellite communications engineering and references to international standards.
A scientific overview of current and future satellite systems for mobile and broadband communications. In part I, the fundamentals of geostationary and non-geostationary satellite constellations and the related questions of communications technology are treated. Part II deals with satellite systems for mobile communications and treats several network features as well as their technology, regulation and financing. Part III is devoted to future satellite systems for broadband communications and explains the specialities of satellite communications, particularly on the basis of ATM and TCP/IP. An extensive survey on operating and planned satellite systems completes the book.
This Handbook presents a complete and rigorous overview of the fundamentals, methods and applications of the multidisciplinary field of Global Navigation Satellite Systems (GNSS), providing an exhaustive, one-stop reference work and a state-of-the-art description of GNSS as a key technology for science and society at large. All global and regional satellite navigation systems, both those currently in operation and those under development (GPS, GLONASS, Galileo, BeiDou, QZSS, IRNSS/NAVIC, SBAS), are examined in detail. The functional principles of receivers and antennas, as well as the advanced algorithms and models for GNSS parameter estimation, are rigorously discussed. The book covers the broad and diverse range of land, marine, air and space applications, from everyday GNSS to high-precision scientific applications and provides detailed descriptions of the most widely used GNSS format standards, covering receiver formats as well as IGS product and meta-data formats. The full coverage of the field of GNSS is presented in seven parts, from its fundamentals, through the treatment of global and regional navigation satellite systems, of receivers and antennas, and of algorithms and models, up to the broad and diverse range of applications in the areas of positioning and navigation, surveying, geodesy and geodynamics, and remote sensing and timing. Each chapter is written by international experts and amply illustrated with figures and photographs, making the book an invaluable resource for scientists, engineers, students and institutions alike.
Revisions to 5th Edition by: Zhili Sun, University of Surrey, UK New and updated edition of this authoritative and comprehensive reference to the field of satellite communications engineering Building on the success of previous editions, Satellite Communications Systems, Fifth Edition covers the entire field of satellite communications engineering from orbital mechanics to satellite design and launch, configuration and installation of earth stations, including the implementation of communications links and the set-up of the satellite network. This book provides a comprehensive treatment of satellite communications systems engineering and discusses the technological applications. It demonstrates how system components interact and details the relationship between the system and its environment. The authors discuss the systems aspects such as techniques enabling equipment and system dimensioning and state of the art technology for satellite platforms, payloads and earth stations. New features and updates for the fifth edition include: More information on techniques allowing service provision of multimedia content Extra material on techniques for broadcasting, including recent standards DVB-RCS and DVB-S2 (Digital Video Broadcasting -Return Channel Satellite and -Satellite Version 2) Updates on onboard processing By offering a detailed and practical overview, Satellite Communications Systems continues to be an authoritative text for advanced students, engineers and designers throughout the field of satellite communications and engineering.
This book extends the scientific bestseller "GPS - Theory and Practice" to cover Global Navigation Satellite Systems (GNSS) and includes the Russian GLONASS, the European system Galileo, and additional systems. The book refers to GNSS in the generic sense to describe the various existing reference systems for coordinates and time, the satellite orbits, the satellite signals, observables, mathematical models for positioning, data processing, and data transformation. This book is a university-level introductory textbook and is intended to serve as a reference for students as well as for professionals and scientists in the fields of geodesy, surveying engineering, navigation, and related disciplines.
An updated guide to GNSS, and INS, and solutions to real-world GNSS/INS problems with Kalman filtering Written by recognized authorities in the field, this third edition of a landmark work provides engineers, computer scientists, and others with a working familiarity of the theory and contemporary applications of Global Navigation Satellite Systems (GNSS), Inertial Navigational Systems, and Kalman filters. Throughout, the focus is on solving real-world problems, with an emphasis on the effective use of state-of-the-art integration techniques for those systems, especially the application of Kalman filtering. To that end, the authors explore the various subtleties, common failures, and inherent limitations of the theory as it applies to real-world situations, and provide numerous detailed application examples and practice problems, including GNSS-aided INS (tightly and loosely coupled), modeling of gyros and accelerometers, and SBAS and GBAS. Drawing upon their many years of experience with GNSS, INS, and the Kalman filter, the authors present numerous design and implementation techniques not found in other professional references. The Third Edition includes: Updates on the upgrades in existing GNSS and other systems currently under development Expanded coverage of basic principles of antenna design and practical antenna design solutions Expanded coverage of basic principles of receiver design and an update of the foundations for code and carrier acquisition and tracking within a GNSS receiver Expanded coverage of inertial navigation, its history, its technology, and the mathematical models and methods used in its implementation Derivations of dynamic models for the propagation of inertial navigation errors, including the effects of drifting sensor compensation parameters Greatly expanded coverage of GNSS/INS integration, including derivation of a unified GNSS/INS integration model, its MATLAB® implementations, and performance evaluation under simulated dynamic conditions The companion website includes updated background material; additional MATLAB scripts for simulating GNSS-only and integrated GNSS/INS navigation; satellite position determination; calculation of ionosphere delays; and dilution of precision.
This book describes the design and performance analysis of satnav systems, signals, and receivers, with a general approach that applies to all satnav systems and signals in use or under development. It also provides succinct descriptions and comparisons of each satnav system. Clearly structured, and comprehensive depiction of engineering satellite-based navigation and timing systems, signals, and receivers GPS as well as all new and modernized systems (SBAS, GLONASS, Galileo, BeiDou, QZSS, IRNSS) and signals being developed and fielded Theoretical and applied review questions, which can be used for homework or to obtain deeper insights into the material Extensive equations describing techniques and their performance, illustrated by MATLAB plots New results, novel insights, and innovative descriptions for key approaches and results in systems engineering and receiver design If you are an instructor and adopted this book for your course, please email [email protected] to get access to the instructor files for this book.
This reader-friendly resource covers the broad spectrum of satellite principles and their associated technologies. While other books limit their coverage to specialized services or to satellite payloads such as communication satellites, Satellite Systems focuses upon the methodology of launching satellites, keeping them there, the environments under which they operate, and other facets particular to their operation. Pattan's detailed, elaborate approach does not assume that the reader is versed in esoteric mathematics. Satellite Systems is specific enough to be a valuable working-tool to scientists and engineers in related fields, yet general enough to be accessible to students and interested lay people. Pattan throughly explores the concepts and technologies of satellite systems in simple, direct terms. Satellite Systems includes precise coverage of: *various orbits and the services they provide *international launch of vehicles and launch sites *phased array antennas for satellite network applications *mobile satellite services from land vehicles, aircraft, and ships *low orbit satellites for telecommunication and position determination applications *international frequency allocations for satellite control, payload management, and status *geometric relationships between satellite and Earth stations used in interference analysis, orbit determination, and location *the hostile environments in which satellites operate and cope *and much more Satellite Systems is a self-contained, extensive introduction that offers professionals and advanced undergraduate and graduate students of satellite systems the tools they need for in-depth understanding of the complexities of the subject. It is ideal as both a reference and a training text for engineers, technicians, communication lawyers, weather professionals, telecommunications experts, students, and anyone interested insatellites and satellite technology.
This is the first book primarily about the satellite payload of satellite communications systems. It represents a unique combination of practical systems engineering and communications theory. It tells about the satellites in geostationary and low-earth orbits today, both the so-called bent-pipe payloads and the processing payloads. The on-orbit environment, mitigated by the spacecraft bus, is described. The payload units (e.g. antennas and amplifiers), as well as payload-integration elements (e.g. waveguide and switches) are discussed in regard to how they work, what they do to the signal, their technology, environment sensitivity, and specifications. At a higher level are discussions on the payload as an entity: architecture including redundancy; specifications--what they mean, how they relate to unit specifications, and how to verify; and specification-compliance analysis (“budgets”) with uncertainty. Aspects of probability theory handy for calculating and using uncertainty and variation are presented. The highest-level discussions, on the end-to-end communications system, start with a practical introduction to physical-layer communications theory. Atmospheric effects and interference on the communications link are described. A chapter gives an example of optimizing a multibeam payload via probabilistic analysis. Finally, practical tips on system simulation and emulation are provided. The carrier frequencies treated are 1 GHz and above. Familiarity with Fourier analysis will enhance understanding of some topics. References are provided throughout the book for readers who want to dig deeper. Payload systems engineers, payload proposal writers, satellite-communications systems designers and analysts, and satellite customers will find that the book cuts their learning time. Spacecraft-bus systems engineers, payload unit engineers, and spacecraft operators will gain insight into the overall system. Students in systems engineering, microwave engineering, communications theory, probability theory, and communications simulation and modelling will find examples to supplement theoretical texts.
“Meteorological Satellite Systems” is a primer on weather satellites and their Earth applications. This book reviews historic developments and recent technological advancements in GEO and polar orbiting meteorological satellites. It explores the evolution of these remote sensing technologies and their capabilities to monitor short- and long-term changes in weather patterns in response to climate change. Satellites developed by various countries, such as U.S. meteorological satellites, EUMETSAT, and Russian, Chinese, Japanese and Indian satellite platforms are reviewed. This book also discusses international efforts to coordinate meteorological remote sensing data collection and sharing. This title provides a ready and quick reference for information about meteorological satellites. It serves as a useful tool for a broad audience that includes students, academics, private consultants, engineers, scientists, and teachers.