Download Free Safety Science Research Book in PDF and EPUB Free Download. You can read online Safety Science Research and write the review.

Safety Science Research: Evolution, Challenges and New Directions provides a unique perspective into the latest developments of safety science by putting together, for the first time, a new generation of authors with some of the pioneers of the field. Forty years ago, research traditions were developed, including, among others, high-reliability organisations, cognitive system engineering or safety regulations. In a fast-changing world, the new generation introduces, in this book, new disciplinary insights, addresses contemporary empirical issues, develops new concepts and models while remaining critical of safety research practical ambitions. Their ideas are then reflected and discussed by some of the pioneers of safety science. Features Allows the reader to discover how contemporary safety issues are currently framed by a new generation of researchers, brought together for the first time Includes an introduction and guide to the development of safety science over the last four decades Features an extraordinary collection of expert contributors, including pioneers of safety research, reflecting the evolution of the discipline and offering insightful commentary on the current and future state of the field Serves as an invaluable reference and guide for safety professionals and students from any established disciplines such as sociology, engineering, psychology, political science or management as well as dedicated safety programmes Some figures in the eBook are in colour
Recent serious and sometimes fatal accidents in chemical research laboratories at United States universities have driven government agencies, professional societies, industries, and universities themselves to examine the culture of safety in research laboratories. These incidents have triggered a broader discussion of how serious incidents can be prevented in the future and how best to train researchers and emergency personnel to respond appropriately when incidents do occur. As the priority placed on safety increases, many institutions have expressed a desire to go beyond simple compliance with regulations to work toward fostering a strong, positive safety culture: affirming a constant commitment to safety throughout their institutions, while integrating safety as an essential element in the daily work of laboratory researchers. Safe Science takes on this challenge. This report examines the culture of safety in research institutions and makes recommendations for university leadership, laboratory researchers, and environmental health and safety professionals to support safety as a core value of their institutions. The report discusses ways to fulfill that commitment through prioritizing funding for safety equipment and training, as well as making safety an ongoing operational priority. A strong, positive safety culture arises not because of a set of rules but because of a constant commitment to safety throughout an organization. Such a culture supports the free exchange of safety information, emphasizes learning and improvement, and assigns greater importance to solving problems than to placing blame. High importance is assigned to safety at all times, not just when it is convenient or does not threaten personal or institutional productivity goals. Safe Science will be a guide to make the changes needed at all levels to protect students, researchers, and staff.
In recent years, the costs of new drug development have skyrocketed. The average cost of developing a new approved drug is now estimated to be $1.3 billion (DiMasi and Grabowski, 2007). At the same time, each year fewer new molecular entities (NMEs) are approved. DiMasi and Grabowski report that only 21.5 percent of the candidate drugs that enter phase I clinical testing actually make it to market. In 2007, just 17 novel drugs and 2 novel biologics were approved. In addition to the slowing rate of drug development and approval, recent years have seen a number of drugs withdrawn from the market for safety reasons. According to the Government Accountability Office (GAO), 10 drugs were withdrawn because of safety concerns between 2000 and March 2006 (GAO, 2006). Finding ways to select successful drug candidates earlier in development could save millions or even billions of dollars, reduce the costs of drugs on the market, and increase the number of new drugs with improved safety profiles that are available to patients. Emerging scientific knowledge and technologies hold the potential to enhance correct decision making for the advancement of candidate drugs. Identification of safety problems is a key reason that new drug development is stalled. Traditional methods for assessing a drug's safety prior to approval are limited in their ability to detect rare safety problems. Prior to receiving U.S. Food and Drug Administration (FDA) approval, a drug will have been tested in hundreds to thousands of patients. Generally, drugs cannot confidently be linked to safety problems until they have been tested in tens of thousands to hundreds of thousands of people. With current methods, it is unlikely that rare safety problems will be identified prior to approval. Emerging Safety Science: Workshop Summary summarizes the events and presentations of the workshop.
How are today’s ‘hearts and minds’ programs linked to a late-19th century definition of human factors as people’s moral and mental deficits? What do Heinrich’s ‘unsafe acts’ from the 1930’s have in common with the Swiss cheese model of the early 1990’s? Why was the reinvention of human factors in the 1940’s such an important event in the development of safety thinking? What makes many of our current systems so complex and impervious to Tayloristic safety interventions? ‘Foundations of Safety Science’ covers the origins of major schools of safety thinking, and traces the heritage and interlinkages of the ideas that make up safety science today. Features Offers a comprehensive overview of the theoretical foundations of safety science Provides balanced treatment of approaches since the early 20th century, showing interlinkages and cross-connections Includes an overview and key points at the beginning of each chapter and study questions at the end to support teaching use Uses an accessible style, using technical language where necessary Concentrates on the philosophical and historical traditions and assumptions that underlie all safety approaches
For many years "safety technology" has constituted the essential instrument for the prevention of accidents as a direct result of handling new technology. Its awareness of the interactions prevalent in natural science causes safety technology to act on the basis of actual accidents, and it Ulilizes to their fullest extent any means provided by the engineering sciences. Man proceeds in a general direction towards preselVation and improvement, thus working towards the optimization of the technical design. However. a new set of basic problems presented itself the moment new large-scale technologies were introduced into the areas of processing, energy, and traffic, thereby creating a considerable amount of ad ditional danger potential. This also signified the end of an era when safety technology could be practiced chiefly on the basis of accident statistics. For ethical reasons it became necessary that a credible prognosis as to the type and effect of accidents took the place, or at least supplemented, the hitherto practiced purely reactive methods. The realization that the available means of safety technology were no longer sufficient in a highly technologized environment spurred the demand for entirely new concepts which would eventually lead to a higher degree of safety. A decisive step had to be taken away from a purely technical approach and fOwards and all-encompassing look at accident systems, because man had become aware of the fact that accidents will always be a part of the interaction between man, technology, and environment.
Exploring the challenges and risks of social science fieldwork, this book shares best practice for conducting research in hostile environments and pragmatic advice to help you make good decisions. Drawing on the authors’ experiences in regions of conflict and grounded in real-world examples, the book: · Provides practical guidance on important considerations like choosing a research question in sensitive contexts · Gives advice on data and digital security to help you minimize fieldwork risk in a contemporary research environment · Offers tools and templates you can use to develop a tailored security framework Building your understanding of the challenges of on-the-ground research, this book empowers you to meet the challenges of your research landscape head on.
Safety Science Research: Evolution, Challenges and New Directions provides a unique perspective into the latest developments of safety science by putting together, for the first time, a new generation of authors with some of the pioneers of the field. Forty years ago, research traditions were developed, including, among others, high-reliability organisations, cognitive system engineering or safety regulations. In a fast-changing world, the new generation introduces, in this book, new disciplinary insights, addresses contemporary empirical issues, develops new concepts and models while remaining critical of safety research practical ambitions. Their ideas are then reflected and discussed by some of the pioneers of safety science. Features Allows the reader to discover how contemporary safety issues are currently framed by a new generation of researchers, brought together for the first time Includes an introduction and guide to the development of safety science over the last four decades Features an extraordinary collection of expert contributors, including pioneers of safety research, reflecting the evolution of the discipline and offering insightful commentary on the current and future state of the field Serves as an invaluable reference and guide for safety professionals and students from any established disciplines such as sociology, engineering, psychology, political science or management as well as dedicated safety programmes Some figures in the eBook are in colour
Research Laboratory Safety explains the most important prerequisite when working in a laboratory: Knowing the potential hazards of equipment and the chemical materials to be employed. Students learn how to assess and control risks in a research laboratory and to identify a possible danger. An approach on the hazard classes such as physical, chemical, biological and radiation hazards is given and exercises to each class prepare for exams.
The nanotechnology sector, which generated about $225 billion in product sales in 2009, is predicted to expand rapidly over the next decade with the development of new technologies that have new capabilities. The increasing production and use of engineered nanomaterials (ENMs) may lead to greater exposures of workers, consumers, and the environment, and the unique scale-specific and novel properties of the materials raise questions about their potential effects on human health and the environment. Over the last decade, government agencies, academic institutions, industry, and others have conducted many assessments of the environmental, health, and safety (EHS) aspects of nanotechnology. The results of those efforts have helped to direct research on the EHS aspects of ENMs. However, despite the progress in assessing research needs and despite the research that has been funded and conducted, developers, regulators, and consumers of nanotechnology-enabled products remain uncertain about the types and quantities of nanomaterials in commerce or in development, their possible applications, and their associated risks. A Research Strategy for Environmental, Health, and Safety Aspects of Engineered Nanomaterials presents a strategic approach for developing the science and research infrastructure needed to address uncertainties regarding the potential EHS risks of ENMs. The report summarizes the current state of the science and high-priority data gaps on the potential EHS risks posed by ENMs and describes the fundamental tools and approaches needed to pursue an EHS risk research strategy. The report also presents a proposed research agenda, short-term and long-term research priorities, and estimates of needed resources and concludes by focusing on implementation of the research strategy and evaluation of its progress, elements that the committee considered integral to its charge.
Much has been written about the care of research animals. Yet little guidance has appeared on protecting the health and safety of the people who care for or use these animals. This book, an implementation handbook and companion to Guide For the Care and Use of Laboratory Animals, identifies principles for building a program and discusses the accountability of institutional leaders, managers, and employees for a program's success. It provides a detailed description of risks-- physical and chemical hazards, allergens and zoonoses, and hazards from experiments--which will serve as a continuing reference for the laboratory. The book offers specific recommendations for controlling risk through administrative procedures, facility design, engineering controls, and periodic evaluations. The volume focuses on the worker, with detailed discussions of work practices, the use of personal protective gear, and the development of an emergency response plan. This handbook will be invaluable to administrators, researchers, and employees in any animal research facility. It will also be of interest to personnel in zoos, animal shelters, and veterinary facilities.