Download Free Safe Robot Navigation Among Moving And Steady Obstacles Book in PDF and EPUB Free Download. You can read online Safe Robot Navigation Among Moving And Steady Obstacles and write the review.

Safe Robot Navigation Among Moving and Steady Obstacles is the first book to focus on reactive navigation algorithms in unknown dynamic environments with moving and steady obstacles. The first three chapters provide introduction and background on sliding mode control theory, sensor models, and vehicle kinematics. Chapter 4 deals with the problem of optimal navigation in the presence of obstacles. Chapter 5 discusses the problem of reactively navigating. In Chapter 6, border patrolling algorithms are applied to a more general problem of reactively navigating. A method for guidance of a Dubins-like mobile robot is presented in Chapter 7. Chapter 8 introduces and studies a simple biologically-inspired strategy for navigation a Dubins-car. Chapter 9 deals with a hard scenario where the environment of operation is cluttered with obstacles that may undergo arbitrary motions, including rotations and deformations. Chapter 10 presents a novel reactive algorithm for collision free navigation of a nonholonomic robot in unknown complex dynamic environments with moving obstacles. Chapter 11 introduces and examines a novel purely reactive algorithm to navigate a planar mobile robot in densely cluttered environments with unpredictably moving and deforming obstacles. Chapter 12 considers a multiple robot scenario. For the Control and Automation Engineer, this book offers accessible and precise development of important mathematical models and results. All the presented results have mathematically rigorous proofs. On the other hand, the Engineer in Industry can benefit by the experiments with real robots such as Pioneer robots, autonomous wheelchairs and autonomous mobile hospital. First book on collision free reactive robot navigation in unknown dynamic environments Bridges the gap between mathematical model and practical algorithms Presents implementable and computationally efficient algorithms of robot navigation Includes mathematically rigorous proofs of their convergence A detailed review of existing reactive navigation algorithm for obstacle avoidance Describes fundamentals of sliding mode control
This book introduces various coverage control problems for mobile sensor networks including barrier, sweep and blanket. Unlike many existing algorithms, all of the robotic sensor and actuator motion algorithms developed in the book are fully decentralized or distributed, computationally efficient, easily implementable in engineering practice and based only on information on the closest neighbours of each mobile sensor and actuator and local information about the environment. Moreover, the mobile robotic sensors have no prior information about the environment in which they operation. These various types of coverage problems have never been covered before by a single book in a systematic way. Another topic of this book is the study of mobile robotic sensor and actuator networks. Many modern engineering applications include the use of sensor and actuator networks to provide efficient and effective monitoring and control of industrial and environmental processes. Such mobile sensor and actuator networks are able to achieve improved performance and efficient monitoring together with reduction in power consumption and production cost.
Wireless Communication Networks Supported by Autonomous UAVs and Mobile Ground Robots covers wireless sensor networks and cellular networks. For wireless sensor networks, the book presents approaches using mobile robots or UAVs to collect sensory data from sensor nodes. For cellular networks, it discusses the approaches to using UAVs to work as aerial base stations to serve cellular users. In addition, the book covers the challenges involved in these two networks, existing approaches (e.g., how to use the public transportation vehicles to play the role of mobile sinks to collect sensory data from sensor nodes), and potential methods to address open questions. Gives a comprehensive understanding of the development of mobile robot-supported wireless communication approaches Provides the latest approaches of mobile robot-supported wireless communication, including scheduling approaches with multiple robots and the online and reactive navigation algorithm Covers interesting research scenarios that include the system model, problem statement, solution and results so that readers will be able to design their own system Presents unresolved research issues and future research directions
Autonomous Navigation and Deployment of UAVs for Communication, Surveillance and Delivery Authoritative resource offering coverage of communication, surveillance, and delivery problems for teams of unmanned aerial vehicles (UAVs) Autonomous Navigation and Deployment of UAVs for Communication, Surveillance and Delivery studies various elements of deployment of networks of unmanned aerial vehicle (UAV) base stations for providing communication to ground users in disaster areas, covering problems like ground traffic monitoring, surveillance of environmental disaster areas (e.g. brush fires), using UAVs in rescue missions, converting UAV video surveillance, and more. The work combines practical problems, implementable and computationally efficient algorithms to solve these problems, and mathematically rigorous proofs of each algorithm’s convergence and performance. One such example provided by the authors is a novel biologically inspired motion camouflage algorithm to covert video surveillance of moving targets by an unmanned aerial vehicle (UAV). All autonomous navigation and deployment algorithms developed in the book are computationally efficient, easily implementable in engineering practice, and based only on limited information on other UAVs of each and the environment. Sample topics discussed in the work include: Deployment of UAV base stations for communication, especially with regards to maximizing coverage and minimizing interference Deployment of UAVs for surveillance of ground areas and targets, including surveillance of both flat and uneven areas Navigation of UAVs for surveillance of moving areas and targets, including disaster areas and ground traffic monitoring Autonomous UAV navigation for covert video surveillance, offering extensive coverage of optimization-based navigation Integration of UAVs and public transportation vehicles for parcel delivery, covering both one-way and round trips Professionals in navigation and deployment of unmanned aerial vehicles, along with researchers, engineers, scientists in intersecting fields, can use Autonomous Navigation and Deployment of UAVs for Communication, Surveillance and Delivery to gain general knowledge on the subject along with practical, precise, and proven algorithms that can be deployed in a myriad of practical situations.
In this book, we have set up a unified analytical framework for various human-robot systems, which involve peer-peer interactions (either space-sharing or time-sharing) or hierarchical interactions. A methodology in designing the robot behavior through control, planning, decision and learning is proposed. In particular, the following topics are discussed in-depth: safety during human-robot interactions, efficiency in real-time robot motion planning, imitation of human behaviors from demonstration, dexterity of robots to adapt to different environments and tasks, cooperation among robots and humans with conflict resolution. These methods are applied in various scenarios, such as human-robot collaborative assembly, robot skill learning from human demonstration, interaction between autonomous and human-driven vehicles, etc. Key Features: Proposes a unified framework to model and analyze human-robot interactions under different modes of interactions. Systematically discusses the control, decision and learning algorithms to enable robots to interact safely with humans in a variety of applications. Presents numerous experimental studies with both industrial collaborative robot arms and autonomous vehicles.
This book will be a collection of the conference manuscripts presented at the 2022 2nd International Joint Conference on Energy, Electrical and Power Engineering covering new and renewable energy, electrical and power engineering. It is expected to report the latest technological developments in the fields developed by academic researchers and industrial practitioners. The application and dissemination of these technologies will benefit the research community, as new research directions are becoming increasingly interdisciplinary, requiring researchers from different research areas to come together and share ideas. It will also benefit the electrical engineering and energy industry, as we are now experiencing a new wave of industrial revolution, i.e. the electrification, intelligentisation and digitalisation of our transport, manufacturing processes and way of thinking.
This monograph provides an overview of the recent developments in modern control systems including new theoretical findings and successful examples of practical implementation of the control theory in different areas of industrial and special applications. Recent Developments in Automatic Control Systems consists of extended versions of selected papers presented at the XXVI International Conference on Automatic Control "Automation 2020" (October 13–15, 2020, Kyiv, Ukraine) which is the main Ukrainian Control Conference organized by the Ukrainian Association on Automatic Control (national member organization of IFAC) and the National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute". This is the third monograph in the River Publishers series in Automation, Control and Robotics based on the selected papers of the Ukrainian Control Conferences "Automation", in particular, the first monograph Control Systems: Theory and Applications (2018) was published based on "Automation – 2017" and the second monograph Advanced Control Systems: Theory and Applications was based on "Automation – 2018". The monograph is divided into three main parts: (a) Advances in Theoretical Research of Control Systems; (b) Advances in Control Systems Application; (c) Recent Developments in Collaborative Automation. The chapters have been structured to provide an easy-to-follow introduction to the topics that are addressed, including the most relevant references, so that anyone interested in this field can get started in the area. This book may be useful for researchers and students who are interesting in recent developments in modern control systems, robust adaptive systems, optimal control, fuzzy control, motion control, identification, modelling, differential games, evolutionary optimization, reliability control, security control, intelligent robotics and cyber–physical systems.
Unmanned Aerial Systems: Theoretical Foundation and Applications presents some of the latest innovative approaches to drones from the point-of-view of dynamic modeling, system analysis, optimization, control, communications, 3D-mapping, search and rescue, surveillance, farmland and construction monitoring, and more. With the emergence of low-cost UAS, a vast array of research works in academia and products in the industrial sectors have evolved. The book covers the safe operation of UAS, including, but not limited to, fundamental design, mission and path planning, control theory, computer vision, artificial intelligence, applications requirements, and more. This book provides a unique reference of the state-of-the-art research and development of unmanned aerial systems, making it an essential resource for researchers, instructors and practitioners. Covers some of the most innovative approaches to drones Provides the latest state-of-the-art research and development surrounding unmanned aerial systems Presents a comprehensive reference on unmanned aerial systems, with a focus on cutting-edge technologies and recent research trends in the area
The integration of applied intelligence with software has been an essential enabler for science and the new economy, creating new possibilities for a more reliable, flexible and robust society. But current software methodologies, tools, and techniques often fall short of expectations, and are not yet sufficiently robust or reliable for a constantly changing and evolving market. This book presents the proceedings of SoMeT_22, the 21st International Conference on New Trends in Intelligent Software Methodology Tools, and Techniques, held from 20 - 22 September 2022 in Kitakyushu, Japan. The SoMeT conference provides a platform for the exchange of ideas and experience in the field of software technology, with the emphasis on human-centric software methodologies, end-user development techniques, and emotional reasoning for optimal performance. The 58 papers presented here were each carefully reviewed by 3 or 4 referees for technical soundness, relevance, originality, significance and clarity, they were then revised before being selected by the international reviewing committee. The papers are arranged in 9 chapters: software systems with intelligent design; software systems security and techniques; formal techniques for system software and quality assessment; applied intelligence in software; intelligent decision support systems; cyber-physical systems; knowledge science and intelligent computing; ontology in data and software; and machine learning in systems software. The book assembles the work of scholars from the international research community to capture the essence of the new state-of-the-art in software science and its supporting technology, and will be of interest to all those working in the field.