Download Free Russian Journal Of Mathematical Physics Book in PDF and EPUB Free Download. You can read online Russian Journal Of Mathematical Physics and write the review.

This is a volume originating from the Conference on Partial Differential Equations and Applications, which was held in Moscow in November 2018 in memory of professor Boris Sternin and attracted more than a hundred participants from eighteen countries. The conference was mainly dedicated to partial differential equations on manifolds and their applications in mathematical physics, geometry, topology, and complex analysis. The volume contains selected contributions by leading experts in these fields and presents the current state of the art in several areas of PDE. It will be of interest to researchers and graduate students specializing in partial differential equations, mathematical physics, topology, geometry, and their applications. The readers will benefit from the interplay between these various areas of mathematics.
This volume deals with those topics of mathematical physics, associated with the study of the Schrödinger equation, which are considered to be the most important. Chapter 1 presents the basic concepts of quantum mechanics. Chapter 2 provides an introduction to the spectral theory of the one-dimensional Schrödinger equation. Chapter 3 opens with a discussion of the spectral theory of the multi-dimensional Schrödinger equation, which is a far more complex case and requires careful consideration of aspects which are trivial in the one-dimensional case. Chapter 4 presents the scattering theory for the multi-dimensional non-relativistic Schrödinger equation, and the final chapter is devoted to quantization and Feynman path integrals. These five main chapters are followed by three supplements, which present material drawn on in the various chapters. The first two supplements deal with general questions concerning the spectral theory of operators in Hilbert space, and necessary information relating to Sobolev spaces and elliptic equations. Supplement 3, which essentially stands alone, introduces the concept of the supermanifold which leads to a more natural treatment of quantization. Although written primarily for mathematicians who wish to gain a better awareness of the physical aspects of quantum mechanics and related topics, it will also be useful for mathematical physicists who wish to become better acquainted with the mathematical formalism of quantum mechanics. Much of the material included here has been based on lectures given by the authors at Moscow State University, and this volume can also be recommended as a supplementary graduate level introduction to the spectral theory of differential operators with both discrete and continuous spectra. This English edition is a revised, expanded version of the original Soviet publication.
The main content of this book is related to construction of analytical solutions of differential equations and systems of mathematical physics, to development of analytical methods for solving boundary value problems for such equations and the study of properties of their solutions. A wide class of equations (elliptic, parabolic, and hyperbolic) is considered here, on the basis of which complex wave processes in biological and physical media can be simulated.The method of generalized functions presented in the book for solving boundary value problems of mathematical physics is universal for constructing solutions of boundary value problems for systems of linear differential equations with constant coefficients of any type. In the last sections of the book, the issues of calculating functions based on Padé approximations, binomial expansions, and fractal representations are considered. The book is intended for specialists in the field of mathematical and theoretical physics, mechanics and biophysics, students of mechanics, mathematics, physics and biology departments of higher educational institutions.
Issues in Applied Mathematics / 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Mathematical Physics. The editors have built Issues in Applied Mathematics: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Mathematical Physics in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Applied Mathematics: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
A wide-ranging 2010 survey of new and important topics in p-adic analysis for researchers and graduate students.
The book shows how the abstract methods of analytic semigroups and evolution equations in Banach spaces can be fruitfully applied to the study of parabolic problems. Particular attention is paid to optimal regularity results in linear equations. Furthermore, these results are used to study several other problems, especially fully nonlinear ones. Owing to the new unified approach chosen, known theorems are presented from a novel perspective and new results are derived. The book is self-contained. It is addressed to PhD students and researchers interested in abstract evolution equations and in parabolic partial differential equations and systems. It gives a comprehensive overview on the present state of the art in the field, teaching at the same time how to exploit its basic techniques. - - - This very interesting book provides a systematic treatment of the basic theory of analytic semigroups and abstract parabolic equations in general Banach spaces, and how this theory may be used in the study of parabolic partial differential equations; it takes into account the developments of the theory during the last fifteen years. (...) For instance, optimal regularity results are a typical feature of abstract parabolic equations; they are comprehensively studied in this book, and yield new and old regularity results for parabolic partial differential equations and systems. (Mathematical Reviews) Motivated by applications to fully nonlinear problems the approach is focused on classical solutions with continuous or Hölder continuous derivatives. (Zentralblatt MATH)
This book is a reference for librarians, mathematicians, and statisticians involved in college and research level mathematics and statistics in the 21st century. We are in a time of transition in scholarly communications in mathematics, practices which have changed little for a hundred years are giving way to new modes of accessing information. Where journals, books, indexes and catalogs were once the physical representation of a good mathematics library, shelves have given way to computers, and users are often accessing information from remote places. Part I is a historical survey of the past 15 years tracking this huge transition in scholarly communications in mathematics. Part II of the book is the bibliography of resources recommended to support the disciplines of mathematics and statistics. These are grouped by type of material. Publication dates range from the 1800's onwards. Hundreds of electronic resources-some online, both dynamic and static, some in fixed media, are listed among the paper resources. Amazingly a majority of listed electronic resources are free.
Polynomials are incredibly useful mathematical tools that have a wide array of applications. This book provides a comprehensive overview of polynomials and recent developments in the field. It includes ten chapters that address such topics as polynomials-based cyclic coding, Hermite polynomials, Routh polynomials, fitting parametric polynomials with control point coefficients, the thermoelastic wave model, and much more.