Download Free Roles Of The Environment In Plant Life History Trade Offs Book in PDF and EPUB Free Download. You can read online Roles Of The Environment In Plant Life History Trade Offs and write the review.

Over millions of years, terrestrial plants have competed for limited resources, defended themselves against herbivores, and resisted a myriad of environmental stresses. These struggles have helped generate more than a quarter million terrestrial plant species, each possessing a unique strategy for success. Yet, as Resource Strategies of Wild Plants demonstrates, the constraints on plant growth are universal enough that a few survival strategies hold true for all seed-producing plants. This book describes the five major strategies of growth for terrestrial plants, details how plants succeed when resources are scarce, delves into the history of research into plant strategies, and resets the foundational understanding of ecological processes. Drawing from recent findings in plant-herbivore interactions, ecosystem ecology, and evolutionary ecology, Joseph Craine explains how plants attain available nutrients, withstand the immense stresses of drying soils, and flourish in the race for light. He shows that the competition for resources has shaped plant evolution in newly discovered ways, while the scarcity of such resources has affected how plants interact with herbivores, wind, fire, and frost. An understanding of the major resource strategies of wild plants remains central to learning about the ecology of plant communities, global changes in the biosphere, methods for species conservation, and the evolution of life on earth.
Life History Evolution represents a synthetic approach to the understanding of the evolution of life history variation using the three types of environment (constant, stochastic, predictable) as the focus under which the theory is developed and tested. First, the author outlines a general framework for the study and analysis of life history variation, bringing together the approaches of quantitative genetic modeling and optimality analysis. Using this framework, he then discusses how life histories evolve in the three different types of environments, each of which presents unique characteristics. The theme of the book is that an understanding of evolutionary change requires analysis at both the genetic and phenotypic levels, and that the environment plays a central role in such analyses. Intended for graduate students and researchers, the book's emphasis is on assumptions and testing of models. Mathematical processes are described, but mathematical derivations are kept to a minimum. Each chapter includes a summary, and boxes provide supplementary material.
Darwin's theory of evolution by natural selection was based on the observation that there is variation between individuals within the same species. This fundamental observation is a central concept in evolutionary biology. However, variation is only rarely treated directly. It has remained peripheral to the study of mechanisms of evolutionary change. The explosion of knowledge in genetics, developmental biology, and the ongoing synthesis of evolutionary and developmental biology has made it possible for us to study the factors that limit, enhance, or structure variation at the level of an animals' physical appearance and behavior. Knowledge of the significance of variability is crucial to this emerging synthesis. Variation situates the role of variability within this broad framework, bringing variation back to the center of the evolutionary stage. - Provides an overview of current thinking on variation in evolutionary biology, functional morphology, and evolutionary developmental biology - Written by a team of leading scholars specializing on the study of variation - Reviews of statistical analysis of variation by leading authorities - Key chapters focus on the role of the study of phenotypic variation for evolutionary, developmental, and post-genomic biology
The seed can be considered the most important plant reproductive element, as a dispersal unit for a successful reproduction in all gymnosperms and flowering plants. The formation of the seed is part of the process of reproduction in seed plants, starting with a mature ovule and following with the fertilization by pollen and some growth within the mother plant to the final outcome of an embryo developed from the zygote, the seed coat from the integuments of the ovule, and a nurturing endosperm in several species. Thanks to this key element as it is the seed, the spermatophytes now dominate all types of biological niches on land, from forests to grasslands, both in hot and cold climates. In this metadata information era, we have the chance for a deeper understanding of seed physiological and developmental processes in order to provide the fundamental basis for making plant (seed) biology research relevant and productive,coping with future challenges.
The theme of this volume is to discuss Eco-evolutionary Dynamics. - Updates and informs the reader on the latest research findings - Written by leading experts in the field - Highlights areas for future investigation
Evolution since Darwin: The First 150 Years comprises 22 chapters and eight shorter commentaries that emerged from a symposium held in November 2009 at Stony Brook University, USA. Thirty-nine authors from 22 universities and two museums in five countries write on areas of evolutionary biology and related topics on which their research focuses. Their essays cover the history of evolutionary biology, populations, genes and genomes, evolution of form, adaptation and speciation, diversification and phylogeny, paleobiology, human cultural and biological evolution, and applied evolution. The volume summarizes progress in major areas of research in evolutionary biology since Darwin, reviewing the current state of knowledge and active research in those areas, and looking toward the future of the broader field.
Life history theory seeks to explain the evolution of the major features of life cycles by analyzing the ecological factors that shape age-specific schedules of growth, reproduction, and survival and by investigating the trade-offs that constrain the evolution of these traits. Although life history theory has made enormous progress in explaining the diversity of life history strategies among species, it traditionally ignores the underlying proximate mechanisms. This novel book argues that many fundamental problems in life history evolution, including the nature of trade-offs, can only be fully resolved if we begin to integrate information on developmental, physiological, and genetic mechanisms into the classical life history framework. Each chapter is written by an established or up-and-coming leader in their respective field; they not only represent the state of the art but also offer fresh perspectives for future research. The text is divided into 7 sections that cover basic concepts (Part 1), the mechanisms that affect different parts of the life cycle (growth, development, and maturation; reproduction; and aging and somatic maintenance) (Parts 2-4), life history plasticity (Part 5), life history integration and trade-offs (Part 6), and concludes with a synthesis chapter written by a prominent leader in the field and an editorial postscript (Part 7).
Plant Resource Allocation is an exploration of the latest insights into the theory and functioning of plant resource allocation. An international team of physiological ecologists has prepared chapters devoted to the fundamental topics of resource allocation. - Comprehensive coverage of all aspects of resource allocation in plants - All contributors are leaders in their respective fields
In the course of evolution, a great variety of root systems have learned to overcome the many physical, biochemical and biological problems brought about by soil. This development has made them a fascinating object of scientific study. This volume gives an overview of how roots have adapted to the soil environment and which roles they play in the soil ecosystem. The text describes the form and function of roots, their temporal and spatial distribution, and their turnover rate in various ecosystems. Subsequently, a physiological background is provided for basic functions, such as carbon acquisition, water and solute movement, and for their responses to three major abiotic stresses, i.e. hard soil structure, drought and flooding. The volume concludes with the interactions of roots with other organisms of the complex soil ecosystem, including symbiosis, competition, and the function of roots as a food source.