Download Free Rogue Waves 2004 Book in PDF and EPUB Free Download. You can read online Rogue Waves 2004 and write the review.

Depuis le colloque Rogue Waves 2000, des avancées significatives ont été réalisées dans la description et la proposition de modèles susceptibles d'améliorer notre compréhension des vagues scélérates. Les questions qui se posent maintenant concernent l'influence que ces résultats doivent avoir sur les normes et pratiques de la construction navale et offshore, et s'ils apportent des possibilités d'amélioration pour les systèmes de prévision et d'alerte. Le colloque Rogue Waves 2004 de Brest a de nouveau rassemblé de nombreux scientifiques et ingénieurs qui ont pu y confronter et discuter leurs positions sur le sujet.
“It came from nowhere, snapping giant ships in two. No one believed the survivors . . . until now” —New Scientist magazine cover, June 30, 2001 Rogue waves are the focus of this book. They are among the waves naturally - served by people on the sea surface that represent an inseparable feature of the Ocean. Rogue waves appear from nowhere, cause danger, and disappear at once. They may occur on the surface of a relatively calm sea and not reach very high amplitudes, but still be fatal for ships and crew due to their unexpectedness and abnormal features. Seamen are known to be unsurpassed authors of exciting and horrifying stories about the sea and sea waves. This could explain why, despite the increasing number of documented cases, that sailors’ observations of “walls of - ter” have been considered ctitious for a while. These stories are now addressed again due to the amount of doubtless evidence of the existence of the phenomenon, but still without suf cient information to - able interested researchers and engineers to completely understand it. The billows appear suddenly, exceeding the surrounding waves by two times their size and more, and obtaining many names: abnormal, exceptional, extreme, giant, huge, s- den, episodic, freak, monster, rogue, vicious, killer, mad- or rabid-dog waves, cape rollers, holes in the sea, walls of water, three sisters, etc.
Science and Engineering of Freak Waves provides a holistic and interdisciplinary view of extreme ocean waves for both scientific and engineering applications. Readers will learn the fundamental theory of extreme waves and the implications they have on coastal structures and methods of prediction through chapters that review the definitions of extreme waves, their history and other important observations. After this, the book's authors describe the theory and modeling of extreme waves that occur in various situations. Final sections provide examples of the application of extreme wave research results to various engineering designs are presented. This book provides a comprehensive overview of the current status of our understandings on freak/rogue waves, the science of extreme waves, prediction, and their engineering applications. As such, it is a must read for physical oceanographers looking for a better understanding of prediction models and the history of these waves, and engineers looking for more information on preparedness and implications for offshore structures and shipping. Presents the history of extreme wave research, including field observations, experiments, numerical modeling, data assimilation and theory Includes numerous freak wave prediction systems and explains when and how they should be used Showcases global case studies where prediction has or could have been used to increase preparedness Provides sample codes so that readers can easily apply these methods to their own science
This self-contained set of lectures addresses a gap in the literature by providing a systematic link between the theoretical foundations of the subject matter and cutting-edge applications in both geophysical fluid dynamics and nonlinear optics. Rogue and shock waves are phenomena that may occur in the propagation of waves in any nonlinear dispersive medium. Accordingly, they have been observed in disparate settings – as ocean waves, in nonlinear optics, in Bose-Einstein condensates, and in plasmas. Rogue and dispersive shock waves are both characterized by the development of extremes: for the former, the wave amplitude becomes unusually large, while for the latter, gradients reach extreme values. Both aspects strongly influence the statistical properties of the wave propagation and are thus considered together here in terms of their underlying theoretical treatment. This book offers a self-contained graduate-level text intended as both an introduction and reference guide for a new generation of scientists working on rogue and shock wave phenomena across a broad range of fields in applied physics and geophysics.
This book commemorates the 70th birthday of Eugene Morozov, the noted Russian observational oceanographer. It contains many contributions reflecting his fields of interest, including but not limited to tidal internal waves, ocean circulation, deep ocean currents, and Arctic oceanography. Special attention is paid to studies on internal waves and especially those on tidal internal waves in the Global Ocean. These papers describe the most important open problems concerning experimental studies of internal waves and their theoretical, numerical, and laboratory modeling. Further contributions investigate the physics of surface waves and their interaction with internal waves. Here, the focus is on describing interaction processes between internal waves and deep currents in the ocean, especially currents of Antarctic Bottom Water in abyssal fractures. They also touch on the problem of oceanic circulation and related processes in fjords, including those occurring under sea ice. Given its breadth of coverage, the book will appeal to anyone interested in a survey of ocean dynamics, ranging from historic perspectives to modern research topics.
This book gives an overview of the theoretical research on rogue waves and discusses solutions to rogue wave formation via the Darboux and bilinear transformations, algebro-geometric reduction, and inverse scattering and similarity transformations. Studies on nonlinear optics are included, making the book a comprehensive reference for researchers in applied mathematics, optical physics, geophysics, and ocean engineering. Contents The Research Process for Rogue Waves Construction of Rogue Wave Solution by the Generalized Darboux Transformation Construction of Rogue Wave Solution by Hirota Bilinear Method, Algebro-geometric Approach and Inverse Scattering Method The Rogue Wave Solution and Parameters Managing in Nonautonomous Physical Model
The theory of waves is generalized on cases of strongly nonlinear waves, multivalued waves, and particle–waves. The appearance of these waves in various continuous media and physical fields is explained by resonances and nonlinearity effects. Extreme waves emerging in different artificial and natural systems from atom scale to the Universe are explored. Vast amounts of experimental data and comparisons of them with the results of the developed theory are presented. The book was written for graduate students as well as for researchers and engineers in the fields of geophysics, nonlinear wave studies, cosmology, physical oceanography, and ocean and coastal engineering. It is designed as a professional reference for those working in the wave analysis and modeling fields.
This book describes the forecasting and risk evaluation of tsunamis by tectonic motion, land slides, explosions, run-up, and maps the tsunami sources in the world's oceans. It presents stochastic Monte-Carlo simulations and focusing mechanisms for rogue waves, nonlinear wave models, breather formulas, and the kinematics of the Draupner wave. Coverage also reveals the full story about the discovery of the very large oceanic internal waves.
This revised and updated second edition details the vast progress that has been achieved in the understanding of the physical mechanisms of rogue wave phenomenon in recent years. The selected articles address such issues as the formation of rogue waves due to modulational instability of nonlinear wave field, physical and statistical properties of extreme ocean wave generation in deep water as well as in shallow water, various models of nonlinear water waves, special analysis of nonlinear resonances between water waves and the relation between in situ observations, experimental data and rogue wave theories. In addition, recent results on tsunami waves due to subaerial landslides are presented. This book is written for specialists in the fields of fluid mechanics, applied mathematics, nonlinear physics, physical oceanography and geophysics, and for students learning these subjects.
The need for tsunami research and analysis has grown dramatically following the devastating tsunami of December 2004, which affected Southern Asia. This book pursues a detailed theoretical and mathematical analysis of the fundamentals of tsunamis, especially the evolution and dynamics of tsunamis and other great waves. Of course, it includes specific measurement results from the 2004 tsunami, but the emphasis is on the nature of the waves themselves and their links to nonlinear phenomena.